Re*‘#@ne Operating. System Programming-1l: Windows CE, OSEK and Real-Time Linux ...

ite control functions for any peripheral present into a system (computer), 7. Graphic editors for kernel
ion, 8. Soft real time scheduling. The following are three important classes of devices in embedded Linux.
-time Linux schedular has all functions as O (1) functions, which means that size of input to a function

(), clo

Linpix has the following features useful for embedded system design.
. ILinux is multi-user OS and supports user groups (2%2).
inux has root directory (represented by / sign) and all files are subdirectories to it. For example, a
evice module file in the subdirectory is /dev. User files directory is /user.
inux has large number of editor, file, directory, IO commands. Each command can consist of a number
f words, first word is command and remaining words are arguments. A word may be a composite word
or several functions and actions.
inux has number of interfaces for user. For example, X-Windows for GUI and csh (for C
hell). [Shell runs a parent process. Shell is an interface for a user to enable entering the commands for
i lthe OS. Shell reads, interprets, checks for errors and executes the command(s). For executing a
i lcommand, a child process is created. (this action is called fork). After execution, there is return to the
parent process, which issues a prompt sign $. The shell waits for another command from user.]
5. [Linux uses POSIX processes and threads (Sections 8.12). Linux header files Linux/ types.h and Linux/
shm.h, if included support the system programming for forking processes and shared memory functions
~ |in the kernel. For shared memory functions the POSIX map are used in Linux.
6. | A process always creates as child process in the process that uses fork () function. The child creates as
the copy of the parent with a new process ID (Section 7.1). There can be 230 process IDs. The fork ()
returns a different process structure pid for the parent and pid number of child becomes = 0. The child
process is made to perform different functions than the parent by overloading function of the parent
process using execv ( ) function. The function has two arguments, the function_name for the child
function and function_arguments for the child functions. Each process has its own memory and cannot
directly call another process. There is no lightweight process as in UNIX.
Linux has modules for the character, block, socket, network device drivers and others
(Section 4.9.4) and Linux 2.6.x supports 4095 device-types. Each type of device can have 230 device
addresses. A character device (for example, parallel port, LCD matrix port, keypad or mice) receives or
sends a sequential access byte stream. A block device (for example, file system or RAM dish) is a device
; |that handles a block or part of a block of data. For example, 1 kB data handled at a time. Each block
device receives or sends through a file system node (Section 8.6.2). A net device (for example, Telnet,
FTP, TCP, IP or UDP protocol stacks networking device) is a device that handles network interface
device (card or adapter) using a line protocols, for example, tty or PPP or SLIP. A network interface
receives or sends packets using a protocol and sockets, and the kernel uses the fhodules related to packet
transmission. An input device is a device that handles inputs from a device, for example, keyboard. An
input device driver has functions for the standard input devices. The media device drivers have functions
for the voice and video input devices. Examples are video-frame grabber device, teletext device, radio
device (actually a streaming voice, music or speech device). A video device is a device that handles the
frame buffer from the system to other systems as a char device does or UDP network packet-sending device

P T




498 ~ ol Embedded Sthms

The video driver has functions for the standard video output devices. A sound device driver has functions for
the standard audio devices. A sound device is a device that handles audio in standard format.

8. Linux supports a module initialization, handling of the errors, prevention of unauthorized port a¢cesses,
usage counts, root-level security and clean up. A module creates by compiling without maih ( ).
A module is an object file. For example, object modulel.o creates from modulel.c file by command
$ gcc — {flags} modulel.c. The Linux OS supports registering of the driver configuratigns and
functions. Table 10.8 gives these functions. Linux scheduler not only schedules the tasks and févice-
driving ISRs but all other device modules also. '

A Linux kernel can insert a module by registering and removing it by de-registering. (Registering Iﬁeans
that it is scheduled later when its turn comes. Deregistering means the module will be ignored. It is|similar
to task spawning and deleting.) MUCOS (Section 10.2) registers and deregisters the tasks apd ISR
interrupts the tasks (for example, by a software interrupt instruction) and passes messages to the tasks. VxWorks
(Section 9.3) kernel registers and deregisters the tasks (pre-empt mode scheduling) as well as nestedd ISRs.
Linux kernel provides registering and deregistering of the device-driver modules aq well.
Thus, the Linux kernel permits the scheduling of device drivers and modules. Therefore, the different asks or
programs can send the bytes concurrently or sequentially to a device through its driver registered at the
kernel. Further, the Linux kernel enforces the use of sequential accesses, an to specific memory addresses
only, by the registering and de-registering mechanism.

Table 10.8 Registering and De-Registering and Related Functions of Linux Modules

Function Action(s) . ﬁ
init The init_module( )is called before the module is inserted into the kernel. The ( dtion
returns 0 if initialization succeeds and negative value if does not. The function tgidters
a handler for something with the kernel. Alternatively it replaces one of the kegnel
functions by overloading. ; !
insmod Inserts module into the Linux kernel. The object file module1.o, inserts by commangl{$
insmod modulel.o. _ _ ?
rmmod A module file modulel.0 is deleted from the kernel by command $ rmmod module§;
H o
cleanup A kemel-level void function, which performs the action on an rmmod call from the exdcytion

of the module. The cleanup_module( ) is called just before the module is remo '{:- .{The
tleanup_module() function negates whatever init_module( ) did and the module unloadgafely.

register_capability A kemel-level function for registering.

unregister_capability - A kernel-level function for deregistering. i
register_symtab A symbol table function support, which exists as an alternative to declaring functiof ¢
variables static. gf '

b

9. Linux header file Linux/time.h, if included supports the timing function in the kernel for schdduling.
Linux header files Linux/delay.h and Linux/tqueue.h, if included support delay functions apd task
queues functions. The task queues supported are the timers, disk, immediate and scheduler.

10. Linux supports signals (Section 7.10) on an event. Linux header file Linux/signal.h is includeq which
supports the signalling function. Linux supports multithreading (Section 7.2), semaphores, | mutex.
Linux header files Linux/pthread.h, Linux/ipc.h Linux/sem.h, Linux/msg.h are included to pupport




: ime Operating System Programming-ll: Windows CE, OSEK and Real-Time Linux ... 499

the POSIX (Sections 8.12) thread, IPC, semaphore (including mutex) and message queue functions,
respectively (Sections 7 10 to 7.16). Table 10.9 gives the functions for the signal, multithreading and
semaphore and message queue IPCs.

11 Linux 2.6.x all tasks aic assigned static priorities between —19 to +20 (highest to lowest). Time slices
are varied as per priority.
12] Real-time Linux 2.6.24—a latest release supports a new set of group-scheduling functions, which
improves CPU load.
13} Linux 2.6.2” rovides high resolution timers as wel as tick-less timers. (Tick-less mean does not result
| in clock-interrupts.)
14] Linux 2.6.24 supports functions to improve system performance by restricting the block device from
taking iarger CPU load.
Regently Wind River of VxWorks fame has optimized its Linux device software platform.
Table 10.9 Linux Functions for the Signal, Multithreading and Semaphore and
Message Queue Interprocess Communication
I .1?10 Feature Description
1 Thread Threads of same process share the memory space and manage access permissions. The IPCs
properties are used for synchronization objects (interprocess communication objects) and threads.
2 Signal 1. struct sigaction signal_1; /* statement in C defines a structure signal_1. */
functions 2. signal_l.sa_flags =0; /* Sets flags = 0*/
3. signal_l.sa_handler = handlingfunction_1; /* Defines signal handler as a user defined
function handlefunction_1. */
4. sigemptyset (&signal_l.sa_mask); /* Defines signal as empty and sa_mask masks the
execution of signal handler. */
5. sigaction (SIGINIT, &signal_l, 0); /* Initiates signal function handlingfunction_1() using
the structure signal_1. */
3 Thread 1. struct pthread_t clientThd_1, clientThd_2, ServingThd; /* statement in C defines three
functions structures for POSIX threads clientThd_1, clientThd_2, ServingThd. */
i 2. pthread_create (&clientThd_1, NULL, 0; thread_1, NULL) /* creates thread with
structure clientThd_1 and calling function thread_1. NULL is the parameter passed.
Similarly the threads clientThd_2, ServingThd and others can be created*/ The function
returns an integer createdstate which is not 0 in case thread creation fails.
3. pthread_self () ; /* Returns (gets) ID of the function pthread_self calling thread (self) */
4. pthread_join (&clientThd_1, &threadNew) /* joins thread with structure clientThd_1 and
threadNew. */ The function returns an integer createdstate which is not O in case thread
creation fails.
5. pthread_exit (“text”) /* exits the thread under execution and text displays on console on
exit. */
6. sleep (sleeptime); /* The thread sleeps for a period = sleeptime nanoseconds. Other
thread gets the CPU in sleep interval*/
7. pthread_kill (); /* Sends ‘kill’ signal to the thread */
4 Semaphore 1. struct sem_t seml, sem2; /* statement in C defines three structures for semaphore
functions structure (event control block), sem1 and sem2. */

(Contd)




S.No. Feature Description

2. sem_init (); The arguments are semaphore to be initiated and options. The function,
returns an integer createdstate which is not 0 in case semaphore initiation fails

. sem_wait (&seml); /* wait for the semaphore sem1 */

. sem_post (&sem1); /* post the semaphore seml */

. sem_destroy (&seml); /* destroy the semaphore sem1 */

W AW

—

5 Mutex struct pthread_mutex_t ms1, ms2; /* statement in C defines three structures for
functions semaphore structure (event control block), ms1 and ms2. */

2. pthread_mutex_init (); Initiates a mutex. The arguments are semaphore to be initiated
(ms1 or ms2 or other) and parameter options. The function returns an integer
createdstate which is not 0 in case mutex initiation fails

3. pthread_mutex_lock (); The argument is mutex ms1 or ms2 or other*/

4. pthread_mutex_unlock (); The argument is mutex ms1 or ms2 or other*/

5. pthread_mutex_destroy (); The argument is mutex ms1 or ms2 or other*/ !

6 . Message 1. pthread_mq_open ( ), mq_close ( ) and mq_unlink () initialise, close and remove a
. queue k named queue. unlink ( ) does not destroy the queue immediately but prevents the ofheér
functions tasks from using the queue. The queue will get destroyed only if the last task close$ the

queue. Destroy means to de-allocate the memory associated with queue ECB.
2. pthread_mgq_setattr ( ) sets the attributes.
pthread_mq_lock ( ) and pthread_mq_unlock ( ) unlock and lock a queue.

Ao

. pthread_mq_send ( ) and pthread_mq_receive ( ) to send and receive into a queue.
mgq_send four arguments are msgid (message queue ID), (void *) &gsendingdata (gointer
to address of user data), sizeof (qsendingdata) and 0. mq__ receive five arguments afe
msgid (message queue ID), (void *) &qreceivedata (pointer to address of bufferdath),
sizeof (greceivingdata), 0 and 0.

5. pthread_mq_notify ( ) signals to a single waiting task that the message is now available.

The notice is exclusive for a single task, which has been registered for a notificatiop.

(Registered means later on takes note of the pthread_mq_notify.)

6. The function pthread_mq_getattr ( ) retrieves the attribute of a POSIX queue.

7 Queues of The queue of functions are equivalent to character devices, accessed via POSIX read/write/
functions open/ioctl system calls.
8 ‘ Time 1. nanosleep (sleeptime); /* Sleep for nanosecond period defined in argument sleeptime /*

functions 2. clock_getthrtime ( ) ; /* getthrtime returns high resolution time (in ns) of the clock
named clock. The clock is name of the clock (system clock) specified earlier. */

3. getthrtime ( ) ; /* getthrtime returns high resolution time (in ns) in a thread in which it is
used as argument. */

4. clock_gettime () ; /* gettime returns time of the clock named clock. */
5. clock_settime () ; /* settime sets time of the clock named clock. */

9 Shared Used as an alternative to using the IPCs.
memory 1. include <shm.h> /* Includes shared memory header*/.
functions 2. include “common.h> /* Includes common memory file header*/. ‘

(Contd)




Real-ﬁlr&é Operating System Programmir j-li: Windows CE, OSEK and Real-Time Linux ...

Feature Description

S.No. |

3. struc common_struct sharedblck; /* Specify a new structure sharedblck */.

4. int shmID = shmget ((key_t) num, sizeof (struc common_struct), 0666 | IPC_CREAT); /*

vt shmget ( ) function arguments are (key_t) num (= 2377), common structure size, and a
option for shared memory creation or use of IPC. Return ID of shared memory
structure*/.

5. sharedMem1 = shmat (shmID, (void *)0, 0) /* Pointer to shared memory block
sharedMem1 is found by function shmat. The arguments are ID of shared memory block,
null pointer function and option 0. */.

6. int shmem_status = shmctl (shmID, IPC_RMID, 0); /* shmetl () function arguments are
The arguments are ID of shared memory block, IPC_RMID pointer and option 0. Return
shared memory status shmem_status */

7. int shmemdetect_status = shmdt (sharedMem1); /* shmdt () function argument is
pointer to shared memory block sharedMem1. Returns -1 if not detected. */

10.3.2 RTLinux

spectively. V. Yodaiken developed RTLinux.

Therelare relatively simple modifications, which converts the non real time Linux kernel with round-robin
schedulef into a hard real-time environment. The deterministic interrupt latency ISRs execute at RTLinux
core and jother in-deterministic processing tasks are transferred to Linux. The forwarded Linux functions are
FIFO with sharing of memory between RTLinux threads as highest priority and Linux functions
running 3s low priority threads. Figure 10.3 shows RTLinux basic features.

Runining the task in the following configuration gives hard real-time performance.

r RTLinux Core for hard and soft real-time environment J

[ K 3 [ [5
, Dpterministic Primitive tasks Real time task FIFO connects Non-real-time
!interrupt-latency with only statically | | with no address real time task with | | processes of
I3Rs execute at allocated memory. | | space protection | | Linux processes, applications run
"Linux core. No virtual memory | | and run with shared memory as the Linux
er in- allocation Priority disabling of perform processes
dpterministic allocation to interrupts synchronization
ssing tasks | |RT threads between the hard
sferred to real time tasks
and the limited
size FIFO queues
F
RTLinux functions, Running RT Thread period definition, Real Time thread functions, 6

I'Running RT Thread scheduling specifications

e Ruyn the primitive tasks with only statically allocated memory. The dynamic memory allocation or

Fig. 10.3 RTLinux basic features

vittual memory allocation introduces unpredictable allocation and load timings.




502

Soft real time-task of applications can be configured to run differently. This is because the RTLin

Run the real-time task with no address space protection. The memory address protection
additional checks, which also introduce the unpredictable allocation and load timings.

Run with disabling of interrupts so that other interrupts do not introduce the unpredictability,
Run a simple fixed priority scheduler.

When the FIFO connects real-time task with Linux processes, perform the synchronization

involves

between

hard real-time tasks and limited-size FIFO-queues that is achieved through use of shared merhory (not

through IPCs).

x allows

flexibility in defining real-time task behaviour, synchronization and communication because the RTLinfix kernel
has been designed with modules, which can be replaced to make the behaviour flexible wherever
Non-real-time processes of applications run as the Linux (before 2.6.x version arrived) proces

RTLinux has the following features useful for real-time embedded system design.
L.

2.
3.

gives a way to compile the module in RTLinux. It is similar to the one in Linux.

Example 10.2

1. include rtl.mk /* Include RTLinux make file. The rtl. mk file is an include file which cor i

DB W

Now command $ compiles the files. Command $ rtlinux start module1 inserts (start) object binar
file modulel.o. Command $ dmesg displays the messages. Command $ rtlinux stop modulel “,
removes (stops) object binary file modulel.o. :

. Deterministic worst-case latency for number of processors, x86, ARM, MIPS tested for

. POSIX threads APIs has POSIX 1003.13 PSE51 specification. The latter is a minimal

Small footprint core. The core is like a virtual machine layer. The RTLinux core provides
preempting kernel as well as non-preempting kernel.

RTLinux executive cannot be preempted.

Real-time tasks run in privileged mode and therefore directly access the hardware and dd
virtual memory. Real-time tasks are written as special Linux modules that can be dynamicall
into memory.

periods of extreme loads is very small.

ible.
kernel as
not use

ly loaded

extended

CPU can be assigned to specific real-time threads, for example, during media processing. Fora task,

priority is introduced and set, and repetition rate and scheduling algorithm can be selected.
RTLinux gives high average case performance and the real-time threads meet the strict w
limited deadlines.

prst-case

system model specification. Linux or Unix functions are the lowest priority threads with PO
using the shared memory and lock-free queues (queuing even when interrupts disab
shared memory.

the flags needed to compile the code. */
all: modulel.o  /* Object file at modulel.o */ ‘
clean: rm -f .0 /* Remove using function rm object files inserted before this file */

modulel.0: modulel.c.. -~ /* modulel.0 is object file of source file modulel.c */ ¥

1)

. $(cc) ${include} ${cﬂags} -cmodulel.c.  /* Compile, include, Cflags C module module1

eal-time
IX IPCs
ed) and




‘ e Operating System Programming-ll: Windows CE, OSEK and Real-Time Linux ...

threads gnd modules. The RTLinux supports the registering of the modules, threads, configurations, functions,
thread priority allocation and scheduling, Table 10.10 gives the registering, de-registering, priority and
schedulipg of real-time thread and FIFO-related functions in RTLinux.

Table 10.10 Registering, De-Registering, Priority and Scheduling of Real-Time Thread
and FIFO-Related Functions in RTLinux

F lklction

Action(s)

init inshod, claenup,
and

RT Lingx functions

Thread reation and
getting thread ID

Semaphore and
mutex functions

Thread pwait

Running RT thread
period gefinition

RT thirepd deletion
Thread fpriority

Put intq the FIFO
from thfead

Real-tirhe thread
functioTs

The init_module(), insmod_module( ), cleanup ()and rmmod_module() functions same as
Linux

1. rtl__hard__enable,.irq Ou* Enables hard real time interrupts */

2. rtl_hard_disable_irq ( );/* Gets current clock schedule */

3. rtlinux_sigaction ( ); /* to RTLinux signal handling function of the application */
4. rtl_getschedclicok ( ):/* Gets current clock schedule */

5. rtl_request_irq ( ); /*to install real time interrupt handler */

6. rtl_restore_interrupts ( ); /* Restores the CPU interrupts state */

7. rl_ stop.interrupts ( ); /* Stops the CPU interrupts */

8. rtl_printf ( ); /*to print text from real time thread */

9. rtl_no_interrupts ( ); /* /* No CPU interrupts permiited*/

Creation and getting ID is same as Linux threads pthread_create () and pthread_self ().
Same as in Linux.

pthread_wait_np(); /*thread waits for other thread to complete*/.

pthread_make_periodic_np (pthread_self(), gethrtime(), 800000000); /* defines periodicity
of thread with a thread self. First argument is reference to self thread (thread itself). Second
argument is gethrtime() is a function to get thread time. Third argument is to define period
of thread run = 800000000 ns. Any other period can be defined in third argument:*/

pthread_delete_np (thread_1); /* Delete the thread thread_1*/ .

1. struct sched_param thrdl thrd2; /* Defines two structures for threads thrdl, thrd2
assignment parameters. */

2. thrdl.sched_priority = 1; /* Deﬁnes thrd1 scheduled priority parameter = 1 (=high).
Similarly thrd2 priority can be defined */

3. pthread_setschedparam (pthread_self (), SCHED_FIFO, & thrd1;/* Function
setschedparam arguments are self function, schedule defines as FIFO and thread
structure thrd1. Similarly thrd2 arguments for Function setschedparam can be defined */

thrd1_put(fid, &queuebuff, 1); ;/* Function thrd!_put arguments are fid (= an integer for. -

FIFO descriptor ID, say, 1, 2, 3, ..), address of queue buffer queuebuff and an option = 1 */

pthread_attr_setcpu_ np ( ); /* Set CPU pthread attributes. */

pthread_attr_getcpu_ np ( ); /* Get CPU pthread attributes. */ .

pthread_attr_setfp_ np ( ); /* Set CPU pthread floating point enable almbutes */

pthread_ suspend_ np ( ); /* Suspends thread run.*/

bl A .

(Contd)



‘ Embedded #Qems

2. rtf_setattr () sets the attributes.
rtf_lock ( ) and rtf_unlock () lock and unlock a queue.

A ow

" descriptor ID, say, 1, 2, 3, ..), address of queue buffer queuebuff and an option =

6. rtf_send () and rtf_receive () to send and receive into a queue. rtf_send four

data), sizeof (gsendingdata) and 0. mq__ receive five arguments are msgid (mes:
queue ID), (void *) &greceivedata (pointer to address of bufferdata), sizeof
(qreceivingdata), 0 and 0.

7. rtf_notify () signals to a single waiting task that the message is now available.

(registered means later on takes note of the rtf_notify).
8. rtf_getattr () retrieves the attribute of a RT FIFO.
rtf_flush () flushes the data of a RT FIFO.
10. rtf_allow_interrupts ; ( ) /* Controls real time interrupt handler */.
11. rtf_free_irq ( ); /*Frees real time interrupt handler */.

o

5. pthread_ wakeup_ np ( ); /* Wakes up the thread .*/ 1
6. pthread_ wait_ np (); /* Wait for start (message or signal) the thread .*/ 3
7. pthread_ setfp_np (); /* Allows floating point arithmetic.*/ !
8. pthread_delete_ np ( ); /* Delete the thread.*/ 'y
Real-time FIFO 1. rtf_create (), rtf_create_rt_handler ( ), rtf_open (), rtf_close ( ) and nf_unlink:( )L:e
functions the functions to createFIFO device, create real-time handler, initialize, close and r{fwve
a named RT FIFIO. unlink ( ) does not destroy the queue immediately but prevenfs the
other tasks from using the queue. The queue will get destroyed only if the last tas éloses

the queue. Destroy means to de-allocate the memory associated with queue ECB,

. rtf_put (fid, &queuebuff, 1); ;/* Function rtf_put arguments are fid (= an integer fpr!FIFO

5. rtf_get (fid, &queuebuff, 1); ;/* Function rtf_get arguments are fid (= an integer fpr FIFO
descriptor ID, say, 1, 2, 3, ..), address of queue buffer queuebuff and an option 1 */.

arguments are fid (FIFO device ID), (void *) &qsendingdata (pointer to addresja user
ge

notice is exclusive for a single task, which has been registered for a notification|

|

¥

|

4

i

IPC is performed by using a FIFO operation as follows. Real-time FIFOs use one source proces
time thread) and one end process (user space process). As one source process sends into the FIFO

b (a real-
qnother

process at the other end of the FIFO receives. RTLinux FIFOs are character devices, (/dev/rtf*). Real-time

threads use integers to refer to each FIFO. Integers 1, 2, 3 for FIFO 1, 2 and 3, respectively. There is

h Bimit to

the number of FIFOs (150). The RTF (RTLinux-FIFO) devices are rtf1 rtf2, rtf3 and so on. Linux ¢haracter

devices use create(), put(), get () and destroy() functions to device create, send from thread and

get into

process and device destroy. The RTF device uses rtf_create (), rtf_put(), rtf_get () and rtf_destroy() functions
to RTF device create, send from thread and get into process and device destroy. Following is the code ¢xample.

Example 10.3

This example shows how to create a thread and defines its real-time periodicity and use RT threafl FIFO

device to put into the buffer. :

1. include rtlh /* Include RTLinux header file.*/
2. include pthread.h /* Include POSIX thread header file.* /
3. include rtl_fifo.h " /* Include RTLinux FIFO header file.*/

4. include time.h " /* Include timer header file.* /




Re&l-ﬁime Operating System Programming-il: Windows CE, OSEK and Real-Time Linux ...

.}int open (“/dev/rtf5”, O_WRONLY); /* Open FIFO device rtf5*/

.| sruct pthread_t clientThd_1 /* Create a client thread 1*/

.}int init_module (void) {

.freturn pthread_create(&clientThd_1, NULL, thread_1, NULL); /* creates thread with structure
plientThd_l and calling function thread_1. Returns the thread ID return. */

1 . .

:void cleanup_module (void) .

A pthread_delete_np (clientThd_1); /* Delete the thread function */

. ;i/oid * thread_1 (int fid) { /* Threadl function */
.} static char queuebuff = 0; /* Define FIFO buffer address */
.} pthread_make_periodic_np (pthread self(), gethmme() 800000000); /* Define thread period

iy . i
E. define fid 5 /* Define FIFO ID = 5 ¥/
%

5

6

¢ fas 800000000 ns */

19.} -while (1)

18.| {pthread_wait_np(); /* wait for RT thread */

19.1 { quenebuff = (int) queuebuff 0xff; /* Define new FIFO buffer address */

20.} rtf_put(fid, & queuebuft, 1); /* Put into the queuebuff FIFO defined by fid */
2? *} return 0; )

' WCE is an open, scalable and small-footprint 32-bit OS.

An enhancement of WCE is Windows CE.NET. [NET framework prov1des for compllmg the managed code.
Managed code is one that is compiled in CIL (common mtermedlate language). It gives platform—mdependent
PU neutral compilation as the byte codes. :
VCE pr0v1des a Windows platform for the systems and it gives a user to feel, look and interact with the system
ising GUISs in a manner similar to a PC running on Windows.

. BDx86 or SuperH or ARM, SH4 and MIPS-baser .. essor architectures are supported by WCE and the WCE
" Jine tunes the processor performance.

ere is componentization of OS. OS has two layers: one is the source code and the is the other is the shared code
rith the devices manufacturer. )
A Windows-based application program is wntten to respond or activate or changes from the current state on
© pushing off notification(s) from the OS. A notification occurs on an event. The notification sends the message to
e Windows application program. Messages are placed in queue for the Windows of the application program.
Win32 API subset is used for GUIs programming.

WCE supports the ISRs which pass the messages to ISTs, which run as lower-priority threads than the ISRs and
S$Ts run as priority queue of threads.

indows uses Handle in many procedures (functions). WCE does not support inheritance of Handles

NCE thread assigned priorities to each one among the eight levels. System-level threads and device drivers
Ts) use the upper 248 levels of priorities.




%

o WCE provisions for GUIs based on Windows, menus, dialog boxes, radio and check buttons. i§
®  Subset of WIn32 APIs in WCE provisien for inputs from keys, touch screen or mouse, communication withjs
port, Bluetooth, IrDA, WiFi, netwodung, device-to-device socket and communication functions. :g;
JOSEK is a structured and modular software implementation based on standardized interfaces and protoddis
‘the automobile distributed ECUs (electronic control units). 1]

and tools for the validation of OSEK/VDX:-based distributed architectures and for conformance testing

Windows CE 6.0 supports 2'¢ number of processes (earlier 32) with each process hairing a virtual memoty l§mit
of 2 GB (earlier 32 MB) and up to lower 2 GB (earlier 32 MB) There is also upper 2 an GB (earlier 32 B} on
the kernel VM space. g
Windows Mobile 6 supports Offfice Mobile 2007, smartphone with touch screen, improved Bluetooth)
YoIP with AEC support to encryption of data stored in external removable storage cards, uses smartﬁlter
files, e-mail, contacts and songs search and can be set as modem for laptop.
WCE provides for system memory between 1 MB and 64 MB and OS needs minimum 512 kB of mem
4 kB of RAM. WCE also provides for managing the low memory conditions.

WCE considers the RAM in two sections: program memory (called system heap) and object store. q
WCE has file systems and databases. The database has a series of un-lockable records with saving of a property(ie$) b
data together in a record. No record contains another record within it. Each record has four-leve! indices for 4
WCE is a multitasking multithreaded program. There is at least one thread whichiis created per process. The bakk ¥
of execution under control of the kernel is the thiread. Eachi'thread has a separate context (for CPU register i ? :
PC-and stack pointer) and staokfmsawngmecormnwhenmreadblocksandformvmg on acnvatmg gad.

semaphores, message queues, wait single object, multiple object and multiple message object funcnons

OSEK/VDX specifies three standards, which give the portability and extendibility features, and thus the re {' bili
of the existing software. OSEK specified three standards: one for embedded OS using MODISTARC (i

OSEK/VDX implementations). The second is for communication and the third is for network managen Q b
OSEK uses abstract interfaces and implementation can be as per hardware and network. OSEK has stand} z
interfacing features for control units with different architectural designs. OSEK has an efﬁcxent design of
architecture. The functionalities in the OSEK standard shall be configurable and scalable, to enable u ignal
adjustment of the architecture to the application in question. i

_OSEK defines fout types of classes BCC1, BECC1, BCCC2, ECC2COM and conformance classes CCQCA ; d

CCCB for internal communication, It specifies that there should be no creation and deletion of tasks d §
Task Priority must be defined and task activates only once in the codes. There must not be use of message et es,
and semaphores must be used as flag only. r |

e Linux uses POSIX processes, threads, shared memory POSIX map and POSIX queues.
e Linux has a number of interfaces for the user. For example, Graphic editors for configuring the § “ cl

X-Windows for:GUI and csh (for C shell). Linux has a number of characters, blocks and network inidrfh
devices and has device drivers for the user-programming environment. . sl
Real-time Linux besides support to the module initialization, handling the errors, prevention of unauthorizp§ gort
accesses, usage counts, root-level security, insert, remove and clean-up functions, also supports precgjpfive
scheduling. Latest vession of real-time Linux is Linux 2.6.24. !
RTLinux has real-time thread wait, thread period definition, thread deletion, priority assignment and F]F 0 i
functions. It provides for running of real-time tasks by RTLinux layer and no deterministic non-real-time by
Linux. A FIFO connects real-time tasks with Linux processes, performs the synchronization between hag
time tasks and limited-size FIFO: queues through the use of shared memory (not through IPCs).
RTLinux provides hard real functionalities in a separate layer, which runs the primitive tasks (real-time ads)
with only statically allocated memory, no dynamic memory allocation, no virtual memory allocation, no akdiless
space protection, runs with disabling of interrupts, runs a simple fixed priority scheduler. ;g
RTLinux has separate functions. rtl_hard_enable_irq ( ); rtl_hard_disable_irq ( );rtlinux_sigactigy : ‘ );
rtl_getschedclcok ( ); rtl_request_irq ( ); tl_restore_interrupts ( ); rtl_ stop_interrupts ( ); rtl_printf ( d
rtl_no_interrupts () and has real-time FIFO functions. ,;

«i’fé'?



ime Operating System Programming-Il: Windows CE, OSEK and Real-Time Linux ... 507

Keywords and their Definitions

A bitmap is a graphical object which can be drawn on screen and is used for creating,
retrieving images, manipulating and drawing at the device context.

A device which is accessed by a file system (disk) like commands and in which a
block is accessed at an instant.

A button is a window wherein the bringing the mouse or stylus near it (in-focus) or
taking it away (out-of-focus) or clicking or taping over it on the screen initiates a
notification from the OS, which then notifies to an API for running.

A device which accesses byte-by-byte analogous to the access from and to a console
or keyboard or printer device using byte streams. -
A process created in Linux by fork ( ) function, which sends new process ID to
parent and makes self ID = 0, and which is made to perform different functions
than the parent by overloading function of the parent process using execv () function.
A video terminal or touch screen or display object for GUI and for displaying
output of the programs in a computer.

An object for controlling program flow, for example, a command, menu or toolbar
bar object or a date and time picker control object or calendar picker control or edit
control to auto-capitalize the first character of a word when keying in and virtual
keyboard or organizer (e.g., task-to-do).

Provisioning of shared source and source code accesses provided by Microsoft such
that there are two software layers. One sublayer consists of Microsoft-developed
source codes of the WCE kernel and is shared with the system or the device
manufacturer. Then the manufacturer adds the remaining part of the kernel according
to the system hardware. The remaining part is the hardware abstraction layer.

A device context specifies the application Window, which sends the pixels to the
screen, which is a tool, which Windows use in managing the access to the display
and printer, which has two attributes of device context colours for background and
foreground, has font of the displayed text, text alignment attributes left, right, top,

" centre, bottom, no update and update of current point and baseline alignment.

Dynamic link library is file, which is linked at run time of .exe file and which loads
on request from the .exe file or another DLL.

An electronic control unit for controlling the unit and its communication w1th other
ECU:s in an automobile or other systems.

A signal from API for initiating a Window notification when an exception condition
is arrived at run time.

A file in ROM for execution that cannot be opened and read by standard ﬂle functions
for open and read.

A device which creates like a thread or file and which is sent.

Graphic user interfaces for facilitating interaction and inputs from the user after
graphic screen displays of menus, buttons, dialog boxes, text fields, labels check-
box and radio buttons and others.

Windows uses Handle in many procedures (functions). The Handle provides reference
to an interface, for example for a Window, file or thread or port. An example is
INSTANCE, a Window object for use as Handle. An interface is an unimplemented



IPC object

IST

Managed code

Network interface
Notification

Object store

ion o
OSEK

PocketPC

Power manager

Real time core

Registry

Emd ‘ 1 S

pmcedum(ﬁmctxonormeﬂxod)mecodcsforwhlchamdeﬁnedmthec
uses that interface. Handle is alsousedasapmme: caﬂeaapuonmmter
An object in a multitasking or multithreading system for communicati
semaphores including mutex semaphores and messages into queues witho
shared memory and which provides for threads synchronization. $
hatmuptservxcetlmadxsadreadwhchnsputmthepnontyqueueoﬂ
waiting for execution and which is a slow-level interrupt service thread ‘ast-
level ISR, which posts the message(s) to that. »

A freeware OS named Linux is after Linus Torvalds, father of the Lmux ?& A

The code that is compiled in CIL . It gives platform-independent CPU‘E
compilation as the byte codes. Anm-txmeenvxmnmemconvertsmeb
instructions into the native machine and platform instruction. ;; 4
An interface device, which accesses using a network protocol such as Telné4,
UDP, SLIP, PPP, SMTP or Bluetooth. é {
The OS monitors all input sources (e.g., stylus tap, virtual (on-touch scedes
physical key press). The OS notifies and sends notification when a key hi bec
pressed or a button has been clicked or command has been received for resi§s
the Windows screen. A notification as a Windows-based application prog
written to respond or activate or changes from the current state on pug 4
notification(s) from the OS. A notification occurs on an event. The notsi
sends the message to the Windows application program. Messages are pl F
queue for the Windows of the application program.

A virtual RAM disk is a permanent store for storing files, registry, PIM, a
databases and is protected from power turning off. Individual file can "
32 MB in case of RAM as object store. If object is not found in RAM, it 15
from the object store.
A pointer which points to a pointer of one of the several sets of the codeg‘
run on selecting the option. ,
OSEK/VDX is a body for defining and specifying three standards for an erfjedded
0OS, communication and network management for automotive apphca bhs| and
control of ECUs. ‘
POSIX thread, a thread for which POSIX standard functions are used tg £n
send, receive, suspend and which uses POSIX IPC semaphores, mutex, i \
queues and FIFOs. i
Handheld PC for home as well as office systems and for cellular néfy
connectivity using Windows CE extension, Windows Mobile, for applicatig "
as Outlook, Explorer, pocket versions of Word, Excel and pocket Pow ;
slide shows, mailing, internet and office applications. :
Software to reduce the power dissipation by reducing clock speed or g
orstopmsuucuonoropununnguseofcachesorstoppmgscmenormduced '
displays after limited wait for user input. 3
A layer of functions for real time threads which has higher priority
kemnel functions. iy
Registry API for system database using standard file registry functions: }
RegCreateKeyEx, RegOpenKeyEx, RegSetValueEx, RegQuery Valui
RegDeleteKeyEx, RegDeleteValueEx and RegCloseKey. o ¥
An interrupt or notification object, which initiates a handler function ( pges
service routine), provided signal is not masked and interrupts are enabled; ] |

p to

- &

ich




e Operating System Programming-li: Windows CE, OSEK and Real-Time Linux ...

: An API at the streaming sockets or datagram to send and receive between two
it Emﬁc addresses at two APIs at different devices.
1. A writing pencxl-com-smpedobjectforauscrofdcwce orsystem as an alwmanve
;10 the mice and keyboard. The user touches the stylus tip at the displayed menu or
i, displayed keypad on the screen to enter the commands or text, respectively.
#1:+:The system APIs and OS in the program memory area of memory. .
: A device for screen displays as well as for aoceptmg umuts through a stylus.
" Voice user interfaces which facilitate interaction and command inputs ‘using stored
. voxceormnes,audvmcecommandmputsfrom the user.
.+ APIs for 32-bit programming using Window classes, objects, controls and Handles
: andformmagmg,dxsplaymgandckawmgmc Windows for the user APIs.
¢ Anobject INSTANCE, which defines a Window (object) to provide Handle(s) for
-« the GUIs and APIs for running the application codes. The object Window has basic
- coordinates x and y;.and :z-parameters; specification. for visibility (show or hide or
+ no-activate), specification: for parent-child. hierarchy and procédures to share the
attributes and to respond the requests and all notifications sent to the Windows.
=7 A"Win32 API subset-based OS for hiandheld computers and mobile systems,
developed by Microsoft that provides a programming environment using a subset
of Win32 APIs, Visual C++, Visual Basic, and that enables a user to feel, look and
interact with the system usmg GUISs in a manner similar to a PC running on Windows.

complhng the managw code
: OS with extensions for Offfice Mobile 2007, smartphone with tomch screen,
4 xmproved Bluetooth stack, VoIP with AEC, support to encrypnon of data stored in

aﬂbesetasmodemfarlapmp
*+. . Streaming or datagram socket APIs in Windows, which hasafeanne of accessmg
persomlareaandnetwcrkrewmcesandﬂmtdnesnotdependonplatfonnand
¥ _mplementauonofsockctf\mcnons s

i

, Review Questions

1. Describe the features of Windows CE. What is the advantage in using .NET framework with Windows CE? Why
does the Windows CE have low interrupt latencies?
2. Describe the additional features in Windows CE 6.0 and Windows CE extensions to Pocket PC, Windows Mobile
b and Windows Automobile 5.0.
3. at are the differences in programming with Windows CE with respect to Windows? Explain meaning of Handle
and Handle inheritance. What is the advantage of withdrawing reducing Handle inheritance in Windows CE?
4, What do you mean by Windows and relationship between the Windows? List the functions for management of
indows.
5. Describe memory management. Explain the similarity in file management and device management functions.
6. Describe the properties and Windows CE functions for the databases.
7. Windows CE and Linux are multitasking-multithreaded OSes, and MUCOS and VxWorks are multitasking OS.
plain the difference between two concepts. What is the basic unit of computations in each of the OSes? Describe
e properties and Windows CE functions for threads and processes.

|
|
|



‘ Embedded Sygtams

8.
9.
10.
11.

12.
13.

14,
15.
16.
17.
18.
19.

20.

22.

23.

24.
25.
26.
217.
28.
29.

30.
31.
32.

33.

34.

35.
36.

Explain the Windows CE exceptions, notifications and interprocess communication objects and their sync
How do the inputs from keys, touch screen or mouse handled in Windows CE?

Describe Windows CE serial communication functions. Describe WNet API network connection functions. .
List WinSock API subset in Windows CE for device-to-device socket-communication functions. How do
communication functions for socket differ from the serial port communication?

How is Win32 API used for development of Windows for the GUIs in an application?
What are the embedded softwares in automotive system that need special features, standards and specificafians in
its operating system? N
What is OSEK/VDX? What are three standards specified for an embedded operating system OS by OSEKNiDX‘?
List the OSEK basic features. How does the OSEK provide for functional extendibility and portability?

What do you mean by classes BCC1, ECC1, BCCC2 and ECC2? Why are the message queues not used, sem ppores
used as flags only and tasks are created and defined priorities at the beginning only in OSEK standard?

(a) List the features of real-time Linux. (b) Describe the functions for registering and de-registering related functions
of Linux modules. (c) How does a child process creates in Linux by fork () function? (d) What are the edtures
added in Linux 2.6.x, which enables real-time system design? (¢) What are the features added in Linux 2.6.24?
List the Linux functions for the signal, multithreading and semaphore and message queue for IPC.
How does RTLinux add a new core for real-time-tasks? How does hard real-time task executes in RTLinux? How
does the shared memory help as a fast alternative to the use of IPC? ‘
What are new functions added in RTLinux? Describe registering, de-registering, priority and scheduling pf! real-
time thread and FIFO-related functions in RTLinux.

- - — ——
Practice Exercises -

}
i

. Write the codes in Win32 API subset of Windows CE for displaying a contact name, telephone number, addfess and

e-mailID at the Window after studying Listing 1-3 in Douglas Boling Programming Microsoft WINDOWS QE.NET,
Microsoft, USA, 2003.

Write the codes for getting messages on Windows using touch screen after studying Listing 3-2 in Dougl Boling
“Programming Microsoft WINDOWS CE.NET”, Microsoft, USA, 2003.

Write the codes for viewing on a Window a file after studying Listing 8-1 in Douglas Boling Programming Mcrosoft
WINDOWS CE.NET, Microsoft, USA, 2003.

Write the codes for querying a database in Windows CE.

Write the codes for creating two threads with highest and lowest priority, respectively, in Windows CE. .
Write the codes for sending and receiving bytes between two Windows CE threads using message queues}
Write the codes for creating serial port and for sending and receiving bytes in Windows CE.
Write the codes for setting user notification and for acknowledging notification in Windows CE.
Write the codes for sending and receiving data between the sockets after creating sockets using SOCKET in Windows
CE.

List the examples of using semaphore flags in an automobile.
Write the codes using fork () for creating a child process in Linux.
Write the codes for creating the threads for sending and receiving PIM (personal information manager) ddta: PIM
includes data of the contacts, calendar and task-to-do. A contact includes name, address, e-mail ID, phone gumbers
of home, office and mobile. The data are sent to another thread using synchronization by a POSIX semaphare.
Write the codes for creating the threads for sending and receiving Strings data through POSIX message qpetes in
Linux. ‘
Write the codes for displaying two texts alternately from two threads using RTLinux.

Write the codes for displaying two texts alternately every 8 s from two threads using RTLinux.
Write the codes for sending a byte stream into a FIFO in RTLinux.

2




esign Examples and
se Studies of Program
odeling and

We have learnt in chapters 1 and 6, and in an online chapter

' f: 1 on ‘Software Engineering Approach for Embedded Systems
i Design’ that the following steps are needed as per software
‘ e engineering and UML modeling approaches.
4188 e First, study the requirements and be clear of the required
L purpose, inputs, signals, events, notifications, outputs,
b functions of the system, design metrics, and test and
C validation conditions.
e Then make the specifications, in terms of users, objects,

‘ sequences, activity, state and class diagrams for abstracting
ua the component, behavioral and events, and create
| description in terms of signals, states, and state machine
3 transitions for each task.

blv e Next, define the system architecture for hardware and
[ software, extra functionalities and related systems. The
‘ architecture specifies the appropriate decomposition of
: software into modules, components, appropriate protection
4, strategies, and mapping of software.

L }{ e After defining the design, implement and test each
o component.

e Finally, integrate components in the system.




We will learn embedded systéms design from the three case studies discussed i this
chapter and four in'the next chapter. The first case study is of an automatic choéglate-
vending machine (ACVM) which was introduced earlier in Section 1.10.2. The sdcond
study is of a digital camera, introduced earlier in Section 1.10.4. The third study if of
a TCP/IP stack, which was introduced earlier in Section 3.11.-
. The objectives of these case studies are as follows:
1. To learn how the reqwremeuts are studzed and speciﬁcatwns of a syste;n are
listed.
2. To learn how UML modeling is used to model the design of the system.
3. To learn to define hardware architecture using microprocessqr or .
microcontroller or ASIPs or DSPs, and devices.
4. Tolearn how to define the software architecture for software, extra functiondlities
and related systems and define the decomposition of software into m
components, appropriate protection strategies, and mapping of software. | .
5. To learn coding for design implementation using MUCOS and VxWorks
RTOSes, and also the use of IPCs for task synchronization and concurrent
processing.

“41:12" CASE STUDY OF EMBEDDED SYSTEM DESIGN AND
CODING FOR AN AUTOMATIC CHOCOLATE
VENDING MACHINE (ACVM) USING MUCOS RTOS

ACVM was introduced earlier in Section 1.10.2. It listed ACVM functions, hardware
and software units. Figure 1.12 showed a diagrammatic representation of ACYM.

multitasking kernel. Section 11.1.7 describes coding for ACVM using MUCOS
(Section 9.2) programming environment.

11.1.1 Requirements

The requirements of the machine can be understood through a requirement table
given in Table 11.1.

11.1.2 Specifications

The ACVM specifications in brief are as follows:
1. It has an alphanumeric keypad on the top of the machine. That endbles a
child to interact with it when buying a chocolate. The owner can also co d

and interact with the machine.




Ta

" Examples and Case Studies of Program Modeling and Programming with RTOS-1

le 11.1 Requirements of an ACVM

quirement ' _ o Description

Purppse To sell chocolate through an ACVM from which children can antomatically purchase the
chocolates. The payment is by inserting the coins of appropriate amount into a coin slot. [Adults
are also welcome to use the machine!]

Inputs 1. Coins of different denominations through a coin slot.
2. User commands.

Signals, events 1. A mechanical system directs each coin to its appropriate port—Port_1, Port_2 or Port_5.

and notifications Each port generates an interrupt on receiving a coin at input. Each port-interrupt starts an

ISR, which increases value of amount-collected by 1 or 2 or 5 and posts an IPC to a waiting task.

2. Each selected menu choice sends a notification to the system.

Outputs 1. Chocolate, and a signal to the system that subtracts the cost from the value of amount-collected.

Fun
sys!

A child sends commands to the system using a GUI (graphic user interface). The GUI consists
of the LCD display and keypad units. A touchscreen is another alternative for LCD and keypad.
The child inserts the coins for the cost of chocolate and the machine delivers the chocolate. If
the coins are not inserted as per the cost of chocolate in reasonable times then all coins are
refunded. If the coins inserted are of more amount than the cost of chocolate, the excess amount
is refunded along with the chocolate. The coins for the chocolates purchased collect inside the
machine in a collector channel, so that the owner can get the money through appropriate
commands using 2 GUL USB wireless modem enables comnmunication to ACVM owner.

.ﬁ 2. Display of the menus for GUIS, time and date, advertisements, and welcome messages.
ions of the

Design metrics 1. Power Dissipation: As required by mechanical units, display units and computer system
2. Performance: One chocolate in two minutes and 256 chocolates before next filling of
chocolates into the machine (assumed)
3. Process Deadlines: Machine waits for a maximum of 30 s for the coins and the machine
should deliver the chocolate within 60 s.
4. User Interfaces: Graphic at LCD or touchscreen display on LCD and commands by children
or machine owner through fingers on keypad or touch screen
S. Engineering Cost. US$ 50000 (assumed)
6. Manufacturing Cost. US$ 1000 (assumed)
Testdrnd validation 1. All user commands must function correctly.
condjtions 2. All graphic displays and menus should appear as per the program.
3. Each task should be tested with test inputs.
4. Tested for 60 users per hour.
2.| It has a three-line LCD display unit on the top of the machine. It displays menus, text entered into the
ACVM, pictograms, and welcome, thank you and other messages. It enables a child as well as the
ACVM owner to graphically interact with the machine. It also displays the time and date. [For graphic
user interactions (GUIs), the keypad and LCD display units or touchscreen are basic units.]
3.| It has a coin-insertion slot so that the child can insert the coins to buy a chocolate of his/her choice.
4. It has a delivery slot so that the child can collect the chocolate, and coins if refunded.
5.! It has an Internet connection port so that the owner can know the status of the ACVM sales from a

remote location.

Sp*ﬂ:ﬁcations of the required functions in detail are as follows:
.| The ACVM displays a pictogram for the chocolate vending company. It displays the GUL The ACVM
can also collect contact and birthday information. It can answer to FAQs (frequently asked questions).




|

‘ Embedded Syl#ms

It displays a welcome message in idle state. It also displays the time and date continuously at
bottom corner of the display screen. It can also intermittently display advertisements or i
information during the idle state.

right
rtant

2. When the first coin is inserted, a timer starts simultaneously. The child is expected to insert 3ll the

required coins in 30s.

3. After 30s the ACVM will display a query in case the child does not insert sufficient coins insid
query is not answered, the coins are refunded.

4. If within a specific time sufficient coins are collected, it displays a message, ‘Thanks, wait for

it. If

la few

moments please!’, delivers the chocolate through the delivery slot, and displays the message, ‘Collect

the chocolate and visit us again, please!’

Figure 11.1(a) shows the basic system of an ‘Automatic Chocolate-Vending Machine System’ (AdeM)

machine. Figure 11.1(b) shows ports at the ACVM. The ports receive the inputs and generate eve
notifications for the outputs—chocolate or display messages or coins.

i
Coins Inlet
—_— LCD Three

—~—

‘\

o Rs 2 lMechanicaI Coin Sorterl e ——— Line Display
:Input Rs ampEsanEsammsm
PREESCEEEsass keypad
1:Input Re.1 SinputRs 5 |LZSSEEse -ﬁéghl
. . . N a USB Wireless
| port_1 |[ otz |[ pons | | mopem . | MBI
’ s ocolate ins Excess
/ ’ >‘ /Ch I Coins E
S _L~=" 7 Chennel  Refund Channel
:Port _Refund! — :port _Collect e
= = :Port Excess Refundl

:Port-Deliver Chocolate/
; Coins
%, Collect
Bowl

(@

[ pons | [ Porrewns |
| Pot2 | [PortExcess Refund|
" Pot3 | | PorColect |

(b)
Fig. 11.1 (a) Basic System ACVM (b) Ports of the ACVM

System specifications in detail are as follows:

nts or

1. There is a slot into which a child (buyer) inserts the coins for buying a chocolate. Suppose the chogolate
costs Rs 8. [Children wish that chocolates should be so cheap!] A coin can be in one of three possible

denominations: Rs 1, 2 and 5. Whenever a coin is inserted, a mechanical system directs each ¢

bin of

value Rs 1 of 2 or 5 to Port_1, Port_2 or Port_5, respectively. Each time a port receives a cgin, it
generates an interrupt, which posts a signal or semaphore to the corresponding task Task_ReadPorts

for reading the coin value at the ports to increase the value of a parameter amount_collected.




Des%g Examples and Case Studies of Program Modeling and Programming with RTOS-1 515

"he machine should have an LCD for dot matrix display or a touchscreen as ‘User Interface’. Let the
nterface port be called Port_Display. It displays the message strings in three lines with the right-hand
ast line corner for display of time and date, and top line left-hand corner for pictogram. The pictogram
isplays the company emblem.

CVM has a bowl from where the buyer collects the chocolate through a port for delivery. Let this
rt be called Port_Deliver. Port_Deliver connects to a chocolate channel. Whenevcr the channel is
eft with only a few chocolates, the owner of the machine fills chocolates into the channel. The buyer
so collects the full refund or excess amount refund at the bowl through the ports Port_Refund (in the
ase of short amount) and Port_ExcessRefund (in the case of excess amount) respectively. All ports,
ort_Deliver, Port_Refund and Port_ExcessRefund, communicate with Port_Collect by inter-process
ommunication (IPC). Port_Collect is a common mechanical interface to Port_1, Port_2 and Port_5.
ort_Deliver is a common mechanical interface to the bowl.

t should also be possible to reprogram the codes and relocation of the codes in the system ROM or flash
r EPROM whenever the following happens: (i) the price of chocolate increases, (ii) the message lines or
enus or advertisement or GUI or graphics need to be changed, or (iii) machine features change.

n RTOS schedules the buying tasks from start to finish. Let MUCOS be the RTOS used in the
CVM.

ith unfilled triangles at the end show the class hierarchy. Classes in the hierarchy can be joined using a
and end numbers on a line shows how the objects of a class associate with objects of another [Table 6.3].

CVM_Devices is an abstract class from which the number of extended classes is derived for the
vices to handle ACVM mechanism. The devices are keypad, display device, wireless USB modem
d coins-input device. Therefore, abstract class ACVM_Devices has four extended classes—
ser_Keypad_Input, Display_Output, Coins_Input and Wireless_USB_Modem.
CVM_Output_Ports is an abstract class from which the number of extended classes is derived for
ndling output ports at ACVM.

CVM_Tasks extends the two classes, ACVM_System_Tasks and ACVM_System_ISRs.
CVM_System_Tasks is an abstract class from which we assume that n extended classes Task!-Taskn
¢ derived. Taskl] to Taskn are the n tasks (processes or threads) at the ACVM. ACVM_System_ISR
s an abstract class from which we assume that m classes are extended. ISR_Task1_ISR_TaskM are
xtended classes for ISR handling tasks at ACVM. [ISR_Taskl to ISR_TaskM are the m ISRs at
CVM. An ISR_Task initiates and runs on a signal or interrupt or event or notification or exception.

ISR _Task differs from a Task in the sense that ISR_Task has higher priority than the Task and an
SR_Task can only post the IPC object(s) (for example, signal, event semaphores, mailbox message

|
{
i
|
|



for notification, message-queue message) to a task(s) [or to an interrupt service thread in dows
CE], while the Task can wait for the IPC(s) as well as post [PC(s) to other tasks. The Task can
as per preemptive or time slicing or any other scheduling [Section 7.6.2]. MUCOS envi
schedules a task in preemptive mode.

Fig. 11.2 Class diagrams of ACVM devices, ports, and tasks

Class Figure 11.3 shows examples of two classes, Display_Output and User_Keypad_Input, to demanstrate
how the classes are shown using UML. ,

The Display_Output class has the following fields for the following: (i) picture for a pictogram, (i}) three
strings, Strl, Str2, Str3, for text lines 1, 2 and 3 respectively, (iii) menuChoiceOffered string for the|choice
offered at an instant to graphic user, (iv) time that is an array of four integers for the current time in hgur and
minutes, (v) amFlag (= 1 when time is AM else 0), (vi) pmFlag (= 1 when amFlag = 0), and (vii) dafe is an
array of four integers, for two digits each for month, day and year.

Display_Output has four methods (functions in C): displayPicture for showing an emblem or other picture,
displayMessage ( ) for showing a message, displayTimeDate ( ) for showing the time and date, displayMenu
() for showing a menu and displayAdv () for showing an advertisement.

The User_Keypad_Input class has the following fields: (i) inputline for the characters received far input
line, for example, text during a child keying in the ID or name, address, date of birth, (ii) advertisement: array
[ 1 of inputChar (iii) inputChar: character, (iv) eight flags— choiceAcceptanceFlag, upKey, downKey, leftKey,
rightKey, enterKey, YKey or NKey for notifying the acceptance of the selected choice or keying of up or
down or left or right or enter or Y or N key, respectively. YKey notifies yes and NKey, no.

User_Keypad_Input has three methods: getFlag ( ), getString ( ) and getChar ( ). These are for getting a
Boolean or string or character from the keypad.




ples and Case Studies of Program Modeling and Programming with RTOS-1

Display_Output User_Keypad_Input

utl. ‘ mm Cher : task_Display: taskUser_Key
t: Sting choiceAcceptanceFlag, Display_Output padinput:
v upKey, downie: User_Keypad_Input

(a) (b)

Fig. 11.8 (a) Classes Display_Output and User_Keypad_Input (b) Objects Task_Display and
TaskUser_Keypad Input

Object Figure 11.3(b) shows examples of two objects based on classes Display_Output and
User_Keypad_Input. It demonstrates how the objects are shown using UML. An object is shown by a
lar box with the object identity followed by a semicolon and then the class identity of which that

gram Figure 11.4 shows a state diagram for ACVM tasks. It demonstrates how the classes are
ing UML. A state diagram shows a model of a structure for its start, end, in-between associations

architecture specifies the appropriate decomposition of hardware into processor(s), ASIPs, memory,
ices, and mechanical and electromechanical units. It also specifies interfacing and mapping of these
nts. Figure 11.5 shows a block diagram of ACVM hardware architecture. Following are the specifications:
icrocontroller 8051MX. This version enables use of RAM and ROM larger than 64 kB.

MB ROM for application codes and RTOS codes for scheduling the tasks. 64 kB RAM for storing
porary variables and stack.

cony;

|
|



o o Embedded

3.

4.

?

l Update time and date display every 15s

| task_GUI, task_Display, taskUser_Keypadinput, task_Communication

Y
| task_ReadPorts for 30s

semaphore

Amount
False Cost | task_Deliver and task_Collect |

task_ExcessRefund ] ‘ semaphore, mailbox
R task_Display
ISR_TimeDate ]

ISR_Ad + semaphore .
[ Restart the cycie

Fig. 11.4 State diagram for ACVM tasks

64 kB flash memory part of the ROM stores user preferences, contact data, user address, user
birth, user identification code, and answers of FAQs.

‘ i&ms

date of

A 1 ps resolution timer is obtained by programming 8051 timer TO interrupt service routini. Eight

hardware-interrupts with 8 interrupt vectors are used for servicing the hardware interrupts.

controlling the ACVM and for retrieving the ACVM status reports by the owner. The ACVM ¢
warning and error reports to the owner. The Internet port helps in the future updating of the
to install new applications. For example, an application which sends SMS messages upon ar
fresh chocolates at the machine or e-mail birthday greetings to users.

- LCD Display or
Touch Screen Power Supply
I

‘___L Microcontroller l—-‘ USB_Wireless_Modem I
Mechanical 8051 MX, 8 MB ROM,
Coin Sorter Coins Channel 64 kB flash memory, timer, Sl and

eight hardware-interrupt
[ Chocolate Channel‘ request controller

. A TCP/IP port provides Internet broadband connection through a wireless USB modem, for r‘}rnnotely

Fig. 11.5 Block diagram of ACVM hardware including Microcontroller

ACVM specific hardware to sort the coins of different denominations. Each denomination coin gg
a set of status bits for the coin inputs and a port-interrupt request (notification for hardware
Using an interrupt service routine for that port, the ACVM processor reads the port status an
bits. The bits give the information as to which type of coin has been inserted. After each read opf
the status bits are reset by the routine.

send
achine
Fival of

nérates
event).
d input
eration,




7.

11.1.

Des## Examples and Case Studies of Program Modeling and Programming with RTOS-1 519

Main power supply of 220 V 50 Hz or 110 V 60 Hz. Internal circuits are driven by a supply of 5 V

. |50 mA for electronic and 12 V, 2 A for mechanical systems.

5 Software Architecture

Software architecture specifies the appropriate decomposition of software into modules, components,

approp!
Figy
extends
ISR_T:
ISR

1.

Hate protection strategies, and mapping of software.

re 11.6 shows a design for the software architecture using the classes for Tasks and ISRs. ACVM_Tasks
to the ACVM_System_ISRs and ACVM_System_Tasks. ACVM_System_ISRs extends to m ISRs,
sk1, ..., ISR_TaskM. ACVM_System_ISRs extends to Taskl,..., TaskN.

 Task1, ..., ISR_TaskM and Taskl,..., TaskN are as follows:

ISR_KeypadInut, ISR_TimeDate, ISR_Ad, ISR_Port1, and ISR_Port2 and ISR_Port5 are the ISRs,

" lwhich service the device interrupts.

| ACVM_System_ISRs i<

% ACVM_Tasks ]
rlSR_Keypadlnput}/ / ; ACVM_System_Tasks l
|__| Task_commumaﬁon]

| ISR_TimeDate
task_GUI
Refund Task_Refund
|SR_POﬂ1 TaskUser_
Key padinput:
ISR_Port2 User_Keypad_ || Task_Collect
ISR_Port5 Input

[Task_ReadPortsr/ l Task_Deliver ’/[ Task_Display ]

Fig. 11.6 Software architecture of ACVM

. |[Task_GUI, Task_Display, TaskUser_KeypadInput, Task_Communication, Task_ReadPorts,

Task_Refund, Task_ExcessRefund, Task_Collect, Task_Deliver and Task_Display are the tasks, which
the kernel schedules.

. [ISR_KeypadInput for Keypad input read an interrupt on pressing a key. On getting an interrupt
. |from the keypad, a message is read from the keypad device buffer. The message is as per the sought input

at that instance. The message is for one of the following: input line (for the characters received for input
line, for example, text during child keying in the ID or name, address, date of birth), input_character (for

. example, for the upKey or downKey or leftKey or rightKey or enterKey or YKey or NKey) or an

input_choiceAcceptanceFlag. The flag = true (a Boolean when for acceptance of user for the choice
marked and shown at display at that instance for one of the offered menu for selection on screen). The
input_choiceAcceptanceFlag notifies the acceptance of selected choice. The message input line, or
input_character or input_choiceAcceptanceFlag is notified to the Task User_Keypad_Input.

. {ISR_KeypadInput posts the message from the keyboard to the task object of User_Keypad_Input

which runs one of the three methods: getFlag ( ), getString () or getChar ( ). [Figure 11.3}

. |An ISR_TimeDate is for updating the time and date. ISR_TimeDate executes on a timer overflow

interrupt, and saves the time and date information. A message is notified to Task_Display. Task_Display
executes the method displayTimeDate ( ). [Figure 11.3]




10.

The following are the details of multiple tasks:

1.

A memory buffer saves the advertisements for display on the ACVM in its idle state at jperiodic
intervals. An ISR_Ad is for selecting an advertisement for display Ona timer overflow inte:

ISR_ _Ad posts a message notification to Task_Display. One advertisement is picked at an in
the memory buffer. The Task_Display executes the method displayAdv ( ).

Task_Display is an object of the class Display_Output [Figure 11.3].

Task_Display runs one of the following methods dlsplayMessage ( ) for messages in mail

display method which runs on | notification from ISR is according to the message notificati
from ISR’ TlmeDate or ISR Ad or ISR_Picture or ISR Menu

timeout period or are in excess of the cost, or (b) it does other Step 8 actions for displaying messages
as per the state of the port just before switching to another task. It sends messages through three
mailbox pointers.
Task_Collect does the following:
(i) Itdirects the Port_Collect to act and the unit collects all the available coins from the ports| Port_1,
Port_2 and Port_5.
(ii) After collection is over, it sends an IPC to another task, Task_Deliver, through Port_|Deliver.
Port_Deliver, on receiving an IPC, initiates action for delivering the chocolate and alsq posts a
signal or semaphore to reset the machine for the next cycle.
(iii) Lastly, it sends a message in the mailbox for display in Task_Display.

Mechanical subsystems also provide a facility, which helps when there are two or more coi
same type. Thus, there can be a maximum of eight total different points at each port. There

ISR_Port1 or ISR_Port2 or ISR_PortS using mailbox message pointers. The ISRs send the
pointer for the port bits.

of Rs 2 for Port_2 point and Rs 5 for the Port_5 point. The child has options for several
combinations for using the machine. The system recovers the cost of a chocolate before
coins and delivering the chocolate.

When a port Port_Collect receives a direction (a signal in the form of a flag) from the Task_|Cbollect,
then all 24 bits for the 24 points at the three ports release the coins using an electromechanical device.
Coins collect at a collection unit. To recover the coins, the machine owner on a convenient time opens




the unit by a lock and withdraws the money. The machine owner also fills the coins in the unit at
Port_ExcessRefund for refunding when the child inserts an extra amount or coin.

. |When a port, Port_Refund, receives a direction (a signal in the form of a flag) from a task, Task_Refund,

it directs all the eight points at each of the ports to release the coins if any, using an electromechanical
device. The coins drop in a bowl if the amount at the three ports is found to be less than the cost. When
a port, Port_ExcessRefund, receives a direction (a signal in the form of a flag) from Task_ExcessRefund,
it directs the eight points at another port to release the excess amount, using an electromechanical
device, and the coins drop in the bowl, provided the amount at the three ports is found to be more than
the cost. [To recover the coins, the child looks at a bowl to withdraw the refunded money.]

. | Task_Refund does the following: (i) It directs the Port_Refund to act and the unit sends the coins from

three ports to a bowl when the amount is short. (ii) It does the other required actions. It sends a display
message for the mailboxes, and the mails in which Task_Display waits.

. | Task_ExcessRefund does the following: (i) It directs the excess refunding on the unit to refund the

excess amount, (ii) It does the other actions described in Step 8 and messages to the mailboxes.

. | At this step, an LCD port gets a message from a Task_Display. The display is as per the state of

the machine or time-date mailed to the task waiting mailboxes. The displayed messages are as
follows: (i) When the machine resets or on the start of a cycle, in the first line, a welcome message,
“Welcome to Sweet Memories Chocolates” is displayed. The second line display is “Insert
amount, please”. The third line on the right corner displays “time and date” from a
Task_TimeDateDisplay which sends the message every second. (i) After a mail from Task_Collect,
the first line shows a message, “Wait for a moment”. “Collect a nice chocolate soon” is displayed in
the second line. The message clears after a timeout. (iii) After a mail from Task_Deliver, the first line
message is “Collect the nice chocolate”. The second line message is “Insert coins for more”. The
message clears after a timeout. (iv) After an event flag from Task_Refund, the message in the first line
is “Sorry”! The second line displays “Please collect the refund”. The messages clear after a timeout.
(iv) After the mails, Task_ExcessRefund displays in the first line, “Collect the chocolate and money”.
“Do not forget to collect the excess” is displayed in the second line. The message clears after a time
out. (v) After a timeout or on machine reset for the next cycle, the display is repeated as in step (i).

. |OSSemPost and OSSemPend semaphore functions at MUCOS synchronize such that Task_ReadPorts

waits for execution of the codes till the necessary amount, indicated by SemAmtCount, are collected
within a specified timeout period. Task_Deliver sends a signal to Port_Deliver that delivers a chocolate
from ACVM and it must deliver only on collection of specific coin combinations such that the amount
received is equal or more than the chocolate cost.

It i§ a must that multiple tasks need to be synchronized with respect to each other, using the IPCs. An

RTOS

is thus required and the binary-semaphores, resource-key semaphores, counting semaphores and

mailbaxes are used for synchronizing and concurrent processing.

Synchronization Diagram Let MUCOS RTOS be the choice for an embedded software development
for AQVM. Figure 11.7 shows multiple tasks and their synchronization model. It demonstrates how to draw
synchrpnization diagrams. The figure mentions synchronization objects near the line connecting a task with
another task. The synchronization object(s) is a semaphore(s) or mailbox message(s) for notification. The
steps fbr synchronization are as follows: :

L

Task_ReadPorts starts zction only when a semaphore SemFlag1 is poéted from the ports. It also accept
the semaphore timeout in case available. Stimeout semaphore is released by timer service routine for
tick after 30s. It accepts amount messages from Port_1, Port_2 and Port_35. It posts message pointers
for mailbox waiting for the miail at Task_Collect.




|
|
|

522 E o Embedded Syptems

2. Task_Collect waits for taking SemFlag1 and MboxAmount. It releases SemFlag2 to let a Task_l)eliver
provide the chocolate. Task_Collect also releases SemFlag2 again which Task_ExcessRefund takes.
This is because the child has already paid extra, so s/he must get a chocolate. :

4: Semfinish
= [ Task Refund — * MboxStr 3
l SemFlag3 | Task_Refund
* MboxAmount
Task-Read | | 1a5¢ Collect || Task_Deliver
Ports 4 : SemFlag2 l
Mbox 7 2: SemFlag1 P :
Messages . Task_Deliver > Task Excess Refund |-
9 1 /; jSem Stimeout 1 3: SemFlag2 l
: Events "
SemFlag1, l MboxStr2
* Ptr1, Task_Date |<
. ptrz, /™1 Display * MboxStrd
* Ptr5
P *MboxStr1 |+ time Date
* MboxStr3
"!J'aastz_ﬂme from Task Refund

Fig. 11.7 Muiltiple tasks and their synchronization model using semaphores and mailbox
messages

3. Task_Refund waits for taking SemFlag3. It sends message to *MboxStr3.
4. Task_ExcessRefund waits for taking SemFlag2 and posts mailbox message Str4 for display.
Task_Display waits for taking SemFlag4. It takes mutex, SemMKey2 before passing the byfes to a
stream for Port_Display and releases it after sending. It displays the mailbox messages at the message
pointers, *Collect, *delivered, *refund, and *ExcessRefund.
5. Method displayTimeDate ( ) displays at Task_Display gets a timeout notification through a k{ailbox

message for time and date. The time outs occur from ISR_TimeDate after every 1000 tic of the
system clock. A timeout updates the time and date values at a pointer *timeDate. It posts ipto the
mailbox *timeDate to Task_Display and displayTimeDate () uses it to display in the third ling, at the
right corner of the LCD.

11.1.6 Creating a List of Tasks, Functions and IPCs

For design implementation using 2 MUCOS RTOS environment, let us create a table. Table 11.2 giyes the
design table. Task synchronization model is used for creating the table. The table gives name, priornity and
actions expected from the task in columns 1, 2 and 3, respectively in each row. IPCs pending and IPCs|pbsted
are given in columns 4 and 5. Mechanical or other system inputs and outputs are given in the last cqlumns,
6 and 7. ' !

11.1.7 Exemplary Coding Steps

The task objects in Figure 11.6 can be implemented as C functions in a MUCOS environment with Q as the
programming language. MUCOS IPC functions can implement the synchronization model shTwn in
Figure 11.7. The following are the MUCOS coding steps for the task objects listed in Table 11.2.




Derw Examples and Case Studies of Program Modeling and Programming with RTOS-1 @
Table 11.2 List of Six Tasks, Functions and IPCs
Task Priority Action IPCs pending IPCs posted ACVM ACVM
Fungtion : input Output
Task] 9 Wiaits for the MboxPtriMsg, Message Coins at
ReadPorts coins and MboxPtr2Msg, Pointer Port_1, —
action as per MboxPtr5Msg, *MboxAmount Port_2 and
coins collected  SemFlagl Port_S5.
messages and
Event signals
from Port_1,
Port_2 and
Port_5;
Stimeout
from timer ISR
Task_ 11 Waits for coins ~ SemFlagl, SemFlag2, - Coins at
Collegt = or > cost *MboxAmount SemFlag3, Port_
till timeout Message Pointers Collect it
and acts *MboxAmount, amount >=
accordingly ’ *Strl cost
Task _ 12 SemFlag2 SemFlag2, Chocolate Delivers
Deliver Message Pointer from a Chocolate
' *Str2 channel into the
bowl.
Task | 17 Waits for SemFlag3 Message Pointer Coins at Coins
Refuryd refund event *Str3 Port_1, Flushed
and refunds Port_2 and back to the
the amount Port_5 bowl.
Task | 13 Refunds the SemFlag2, Message Pointer Coins atthe  Excess
Excess excess *MboxAmount *Strd Ports Coins from
Refund amount Excess Port_Excess
Refund Refund
channel
Task_| 15 Waits for the Message pointers: Strings for Bytes for
Display message mails  Collect, *delivered, line 1,2and  the LCD
*refund, 3 and time display to
*ExcessRefund date, lines 1, 2
(Str 2, Str3, Str4) and 3.
and *timeDate
Exapple 11.1

5
.

efine Boolean variable, define a NULLpointer to point in case mailbox is empty. */
¢f unsigned char int8bit;

¢ int8bit boolean

#defige false 0

1
1
|
|



Embedded Syq*ms

#define true 1
/* Define a NULL pointer; */
#define NULL (void*) 0x0000

i i

/* Preprocessor commands define OS tasks service and timing functions as enabled and their consthnts;

similar to Example 9.7. */

#define OS_MAX_TASKS 10

#define OS_LOWEST_PRIO 28 /* Let lowest priority task be 19. */

#define OS_TASK_CREATE_EN 1 /* Enable inclusion of OSTaskCreate ( ) function */
#define OS_TASK_DEL_EN 1 /* Enable inclusion of OSTaskDel () function */

#define OS_TASK_SUSPEND_EN 1/* Enable inclusion of OSTaskSuspend () function */
#define OS_TASK_RESUME_EN 1/* Enable inclusion of OSTaskResume () function */

/* Specify all child prototype of the first task function that is called by the main function and is

scheduled by MUCOS at the start. In Step 11, we will be creating all other tasks within the first task] ":/

/ * Remember: Static means permanent memory allocation */

static void FirstTask (void *taskPointer);

static OS_STK FirstTaskStack [FirstTask_StackSize];

/* Define public variables of the task service and timing functions */

fo be

i

#define OS_TASK_IDLE_STK_SIZE 100 /* Lgt-memory allocation be for an idle state task stack size.be

100%/

: !
#define OS_TICKS_PER_SEC 1000 / * Let the numbet of ticks be 1000 per second. An RTC tick] will

interrupt and thus tick every 1 ms to update counts. */

#define FirstTask_Priority 4 /* Define first task in main priority */
#define FirstTask_StackSize 100 /* Define first task in main stack size */
#define cost 8 /* Define cost of chocolate as Rs 8 */

2. /* Preprocessor definitions for maximum number of inter-process events to let the MUCOS alloc.né

memory for the Event Control Blocks */

#define OS_MAX_EVENTS 24/* Let maximum IPC events be 24 */

#define OS_SEM_EN 1/* Enable inclusion of semaphore functions. */

#define OS_MBOX_EN 1/* Enable inclusion of mailbox functions for the mailing of the
message pointers to Task_Display. */

#define OS_Q_EN 1/* Enable inclusion of queue functions for sending the string pointers
to LCD matrix Port_Display * /

/* End of preprocessor commands */

3. /* Prototype definitions for six tasks */

static void Task_ReadPorts (void *taskPointer);

static void Task_ExcessRefund (void *taskPointer);

static void Task_Deliver (void *taskPointer);

static void Task_Refund (void *taskPointer);

static void Task_Collect (*taskPointer);

static void Task_Display (void *taskPointer);

/* Definitions for six task stacks. */

static OS_STK Task_ReadPorfsStack [Task_ReadPortsStackSize];

static OS_STK Task_ExcessRefundStack [Task_ExcessRefundStackSize];




D+Ikﬁ Examples and Case Studies of Program Modeling and Programming with RTOS-1

i OS_STK Task_DeliverStack [Task_DeliverStackSize];

OS_STK Task_RefundStack [Task_RefundStackSize];

OS_STK Task _CollectStack [Task_CollectStackSize];

i DS_STK Task_DisplayStack [Task_DisplayStackSize];

iDefinitions for six task-stack sizes. */

‘ Task_ReadPortsStackSize 100 /* Define task 1 stack size*/

ne Task_ExcessRefundStackSize 100 /* Define task 2 stack size*/

e Task_DeliverStackSize 100 /* Define task 3 stack size*/

he Task_RefundStackSize 100 /* Define task 4 stack size*/

e Task_CollectStackSize 100 /* Define task 5 stack size*/

¢ Task_DisplayStackSize 100 /* Define task 6 stack size*/

Yefinitions for six task-priorities. */

Task_ReadPortsPriority 9 /* Define task 1 priority */

Task_ExcessRefundPriority 13 /* Define task 5 priority */

e Task_DeliverPriority 12 /* Define task 3 priority */

e Task_RefundPriority 17 /* Define task 4 priority */

e Task_CollectPriority 11 /* Define task 2 priority */

e Task_DisplayPriority 15 /* Define task 6 priority */

) ototype definitions for the semaphores. */

VENT *SemFlagl; /* On interrupt signals from Port_1 to Port_5, Task_ReadPorts starts running.
ag needed when using semaphore for iriter-process communication between tasks reading amount
me s ge from Port_1, Port_2 and Port_5. */

VENT *SemFlag2; /* Needed when using semaphore as flag for inter-process communication for
!. livery over event notification and between Task_Collect and amount refunding task, Task_Delivery. */
+BYENT *SemFlag3; /* Needed when using semaphore as flag for mter-process communication

: Task_Collect and Task_ExcessRefund. */

NT *MbothrlMsg,

ENT *MboxPtr2Msg; /* :

NT *MboxPtr3Msg; t

[VENT *MboxStrIMsg, *MboxStr2Msg, *MboxAmount, *MboxTuneDateStrMsg, /* Needed when
hailbox message for sending display, amount and timedate pointers */

WENT *MboxStr3Msg, *MboxStrdMsg;

*/

4 1 = 0SSemCreate (0); /* Declare initial value of semaphore = 0 for using it as an event flag*/
ag2 = OSSemCreate (0); /* Declare initial value of semaphore = 0 for using it as an event flag*/
ag3 = OSSemCreate (0); /* Declare initial value of semaphore = 0 for using it as an event flag*/
StimeOut = OSSemCreate (0); /* declare initial value = 0 for timeout flag */

8. /f Create eight Mailboxes for the tasks. */

Amount = OSMboxCreate (NULL);



Embedded S%s

MboxStriMsg = OSMboxCreate (NULL);
MboxStr2Msg = OSMboxCreate (NULL);
MboxStr3Msg = OSMboxCreate (NULL);
MboxStrdMsg = OSMboxCreate (NULL);

MboxTimeDateStrMsg = OSMboxCreate (NULL); /* For message from Task_Display. */ i B

9. /* Any other OS Events for the IPCs. */
OSMboxPtriMsg = OSMboxCreate (NULL);

OSMboxPtr2Msg = OSMboxCreate (NULL); i
OSMboxPtr5Msg = OSMboxCreate (NULL), 4t
10. /* The codes are for reading from Port A and storing a character. Here, we have three portsoiﬁ_l,

Port_2 and Port_5 for Rs 1, 2 and 5 denomination coins. These are basically device driver ¢

port_1, port_2 and port_5 and three status flags for resetting to the beginning. */ b
STAF _1=0;
STAF _2=0;
STAF _3=0;

11. /* Start of the codes of the application from Main.

Note: Code steps are similar to Steps 9 to 17 in Example 9.16 */

int port amount (int *amt); /* declare function to convert string from port to an integer value for amog
void main (void) { /
12. /* Initiate MUCOS RTOS to let us use the OS kemel functions */ b
OSHnit ( ); E

for

¥

H

13. /* Create first task, FirstTask that must execute once before any other. Task creates by deﬁrdh% its

identity as FirstTask, stack size and other TCB parameters. */

OSTaskCreate (FirstTask, void (*) 0, (void *) &FirstTaskStack [FirstTask_StackSize], FirstTask | hﬁfﬁy),
te 48 1

/* Create other main tasks and inter-process communication variables if these must also execu
once after the FirstTask. */

14. /* Start MUCOS RTOS to let us RTOS control and run the created tasks */ % ;

OSStart ();

takes the control forever. */
}/ *** End of the Main function ***/

/* Infinite while-loop exits in each task. So there is no return from the RTOS function OSStart ( ). *?ﬁ
* i
%’

15. /* The codes of ISR_Keypad Input, ISR _Port 1, ISR_Port 2, ISR_Port 5 for ACVM_System_I

16. static void FirstTask (void *taskPointer){
17. /* Start Timer Ticks for using timer ticks later. */
OSTicklnit (); /* Function for initiating RTCSWT that starts ncks at the configured time in the

MUCOS configuration preprocessor commands in Step 1 */. 1

18. /* Create six Tasks defining by six task identities, Task_Display, Task_ReadPorts,

*/

OSTaskCreate (Task_Display, void (*) 0, (void *) & Task_DisplayStack
[Task_DisplayStackSize], Task_DisplayPriority); ‘

OSTaskCreate (Task_ReadPorts, void (*) 0, (void *) & Task_ReadPortsStack
[Task_ReadPortsStackSize], Task_ReadPortsPriority); .

Task_ExcessRefund, Task Deliver and Task_Refund and the stack sizes, other TCB parameters gﬂ

ast

TOS




D%nw Examples and Case Studies of Program Modeling and Programming with RTOS-1

pskCreate (Task_ExcessRefund, void (*) 0, (void *) & Task_ExcessRefundStack
#sk. ExcessRefundStackSize], Task_ExcessRefundPriority);
{ThskCreate (Task_Deliver, void (*) 0, (void *) & Task_DeliverStack [Task_DeliverStackSize],

: kCreate (Task_Refund, void (*) 0, (void *) & Task_RefundStack [Task_RefundStackSize],
efundPriority);

: kCreate (Task_Collect, void (*) 0, (void *) & Task_CollectStack [Task_CollectStackSize],
CollectPriority);

‘1le (1) { /* Start of the while loop*/

fSuspend with no resumption later the First task, as it must run once only for initiation of timer ticks
gr creating the tasks that the scheduler controls by preemption. */

bkSuspend (FirstTask_Priority); /*Suspend First Task and control of the RTOS passes forever to
 asks, waiting their execution*/

£ End of while loop */

}}#* End of FirstTask Codes */

*****************************************************************/

e [¥: amount = 0; exit ()
1 : amount = 1; exit ()

! : amount = 2; exit ()

e f: amount = 3; exit ()
B : amount = 4; exit ()

: amount = 5; exit ()

retﬂrﬂ%!amount;
241/%The codes for Task_ReadPorts */
/’:II*****************************#***/
Stafi »voul Task_Read Ports (void * taskPointer)
{ } :
254/ ;inmal declarations */

int prpgport = 0; /* value of amount collected at ports */
*gmount1; /* Pointer to Port 1 message for amount */
* g ount2 1* Pointcr to Port 2 message for amount */




Embedded S)#e_rns

*amount2 = OSMboxAccept (MboxPtr2Msg, 0, ErrPointer M2); !
*amount5 = OSMboxAccept (MboxPtrSMsg, 0, ErPointer M5) :
30. amtport = portamount (&amountl) + 2 * portamount (& amount2) + 5 *_portamount (& ammﬁ,ii?)
} /* wait till amount at ports > = cost */ ,
OSMboxPost (MboxAmount, &amtport); /*post the among value */
amtport = 0; / *set the amount at port = Q */ ,
OSTaskSuspend (Task_ReadPortsPriority); !
/* The lower priority task_collect now runs */ : 1
31. }; /* End of while loop*/ ;
} * End of the Task_ReadPorts function */
/*********************************************************************/

32. /* Start of Task_Collect codes */ :
static void Task_Collect (void *taskPointer) { 1.
33. /* Initial Assignments of the variables and pre-infinite loop statements that execute once only*/
int *amount = 0; :

34. while (1) { /* Start an infinite while-loop / .
35. /* Take Mbox amount value */ 1
*amount = OSMboxPend (MboxAmount, 0, MboxErrPointer); !
36. if (*amount > = cost) {OSMboxPost (MboxAmount, *amount); '
OSMboxPost (MboxStr1Msg, “wait for a moment collect a nice chocolate soon”); /* Send &k[ﬂay
message */

0OSSemPost (semFlag2, 0 * ErrPointer); /* Event notify to task_deliver */
37. I* codes for mechanical system to collect the coins from Port_1, Port_2 and Port_5 so that pons»iare
empty for new coins input *} ‘

3 ¥
else {OSSemPost (SemFlag3, 0, *ErrPointer)}
OSTaskSuspend (Task_CollectPriority); /* Task_Refund */
OSTaskResume (Task_ReadPorts);

}; End of while loop ;
38. } / * End of the Task_Collect function */
/f******************g:************************************************/

39. /* The codes for the Task_Deliver */

static void Task_Deliver (void *taskPointer) { :
40. /* The initial assignments of the variables and pre-infinite loop statements that execute once oﬂky i

. b
41. while (1) { /* Start an infinite while-loop. */ 3
42. /* Wait for flag SemFlag2 from Task_Collect */ . :
OSSemPend (SemFlag2, 0, SemErrPointer); e
43, /* Codes for device driver for Port_Deliver for delivering a chocolate into a bowl. */

44 /* Post two mails to waiting Task_Display through two message pointers for first line and secq di
line of LCD matrix at Port_Display. */




D&%gn Examples and Case Studies of Program Modeling and Programming with RTOS-1

OBPMboxPost (MboxStr2Msg, “Collect the nice chocolate. Thank you, Insert coins for more”); I*
¥ Let delayed higher priority task err resume. */

; Post semaphore to flag that the chocolate delivery is over. */

Post (SemFlag?2); /* SemFlag3 to task excess refund if any */

askSuspend (Task DehverPnonty),

End of while loop*/
{ * End of the Task_Deliver function */

j Start of Task_Refund codes */
z void Task_Refund (void *taskPointer) {
ftial assignments of the variables and pre-infinite loop statements that execute once only*/

.¥* Code for the device driver to let Port_Exit release the coins as refund as within twenty cycles of
clogk ticks, if child fails to insert the coins of the required amount. */

f at Port_Display. */
boxPost (MboxStr3Msg, “For chocolate, Insert coins again collect Refund”); /*
imeDlyResume (Task_Display);
askResume (Task_CollectPriority); /* Return to Task_Collect_Priority. */
End of while loop*/

. ¥* Start of Task_ExcessRefund codes */
statle void Task_ExcessRefund (void *taskPointer) {
* Initial assignments of the variables assignments and pre-infinite loop statements that execute once

hile (1) { /* Start the infinite loop */

ait for SemFlag2 from chocolate deliver task */

emPend (SemFlag2, 0, SemErrPointer);

ait for amount pointer in order to refund the excess amount */
gount = OSMboxPend (MboxAmount, 0, *MboxErrPointer);
jount = *amount_cost;



« , Embedded Sy*x‘hs

i ;
58 /* Post mail to waiting Task_Display through message-pointer for the first line and second line ofqu D

matrix at Port_Display. */

OSMboxPost (MboxStrdMsg, “Pl collect the excess Amount inserted Thank you, Visit Again” . 1

59. OSTaskSuspend (Task_Excess Refund Priority);
OSTask_Resume (Task_Deliver_Priority);

}; /* End of while loop*/
60. }/ * End of the Task_ExcessRefund function */
/***********************************************************************/
61. /* The codes for the Task_Display */
static void Task_CharCheck (void *taskPointer) {

62. /* Declare string variables for the three lines and other initial assignments and pre-infinite loop statex qts

that execute once only. */
unsigned char [ ] Strl, Str2, Str3, Str4, currentTimeDate; /* A variable to display at the right corner
3 of LCD Matrix */

63. /* Start an infinite while-loop. */

while (1) {

/* Wait for Messages for line 1, line 2 and line 3. */

Strl= OSMboxAccept (MboxStriMsg, 0, MboxErrPointer);
Str2 = OSMboxAccept (MboxStr1Msg, 0, MboxErrPointer);
Str3 = OSMboxAccept (MboxStr3Msg, 0, MboxErrPointer);
Str4 = OSMboxAccept (MboxStr4Msg, 0, MboxErrPointer);
64. currentTimeDate = OSMboxAccept (MboxTimeDateStrMsg, 0, MboxErrPointer);
displayTimeDate (currentTimeDate );

/* TimeDate display */

if (Str1 ! = NULL) displayStrt ( );

if (Str2 ! = NULL) displayStr2 ( );

if (Str3 ! = NULL) displayStr3 ()

if (Str4 ! = NULL ) displayStr4 ( );

65. /* Device driver Codes for sending the four strings to a byte stream from line 0 character first ﬁltst

character line through Port_Display. */

OSTimeDly (200) (SemMKey2);

OSTaskResume (Task_ExcessRefundPriority);

66. }/ * End of While loop

}; /* End codes for the Task_Display */
/**************************************************************#********/
67. /* Codes for function displayTimeDate */

static void displayTimeDate (unsigned char [ ] currentTimeDate ) {

68. /* Initial assignments of the vanables */

unsigned char *timeDate;

s

(s
L

L

s




De%#;z Examples and Case Studies of Program Modeling and Programming with RTOS-1 @

}/4Hnd of Codes for displayTimeDate function */

i

z

.JISR codes for posting mailbox message to Task_Display */

' " boxPost (MboxTimeDateStrMsg, timeDate);
* End of ISR_TimeDate code*/

CASE STUDY OF DIGITAL CAMERA HARDWARE AND SOFWARE
ARCHITECTURE

The digjtal camera was introduced earlier in Section 1.10.4. A digital camera is an example of SoC. [Section].6.]
Section| 1.10.4 listed the camera functions, hardware and software units. Figures 1.14 showed the hardware
and soffware components in a simple digital camera.

Sectjons 11.2.1 and 11.2.2 give the design steps of a digital camera. Sections 11.2.3 and 11.2.4 describe
hardwafe and software architecture.

11.2.3 Requirements

Requirgments of the digital camera can be understood through a requirement table given in Table 11.3.

The
1.

tailed functions inside the camera are as follows:

set of controllers control shutter, flash, (for example, for peripherals, direct memory access, and

ses), auto focus and eye-ball image control. GUI consists of the LCD display for graphics, and
witches and buttons for inputs at camera. A touchscreen is another alternative for LCD and keypad.

e user gives commands for switching on the camera, flash, shutter, adjust brightness, contrast,
olor, save and transfer. The user commands are in the form of interrupt signals. Each signal generates

m a user input from an operated switch or button. When a button for opening the shutter is pressed,

flash lamp glows and a self-timer circuit switches off the lamp automatically.

e picture generates light, which falls on the CCD array, which through an ADC transmits the bits
or each pixel in each row in the frame, and also for the dark area pixels in each row in a vertical strip
or offset correction in CCD signaled light intensities for each row. The strip is in adjacent frame.

picture consists of a number of pixels. The number of pixels used for a picture determines resolution.

Each picture consists of a number of horizontal and vertical pixels. For 2592 x 1944 pixels, there are
P592 x 1944 = 5038848 sets of cells. Each set of pixel has three cells, for the red, green and blue
Fomponents in a pixel. Each cell gets exposed to a picture when the shutter of camera opens on a user
fommand. The camera records the pictures using a charge-coupled devices (CCD) array. The array
tonsists of a large number of CCD cells, three at each pixel.




532

Table 11.3 Requirements of a Digital Camera

Requirement

Embedded S*Ems

Description

Purpose

Inputs

Signals, events and
notifications

Outputs

Functions of the
system

Design metrics

Test and validation
conditions

BWN e

—

2.

3.

User commands given as signals from switches/buttons.

W N -

~o e N

LN -

. Digital recording and display of pictures. ¢
. Processing to get the pictures of required brightness, contrast and color.

. Transfer files to a computer through a port.

. Encoded file for a picture.

. Permanent store of the picture at a file on a flash-memory stick.
. Screen display of picture from the file after decoding.

. File output to an interfaced computer.

‘2592XI728 3.2 M, 2048 x 1536 =3 M and 1280 x 960 = IM.

. User Interfaces: Graphic at LCD or touchscreen display on LCD and comm

. Engineering Cost: US$ 50000 (assumed). ;
. Manufacturing Cost: US$ 50 (assumed). §

. All graphic displays and menus should appear as per the program.
. Each task should be tested with test inputs. :
. Tested for 30 pictures per m.

1
Permanent saving of a picture in a file in a standard format at a flash-memory stick (m' c%d) .

Intensity and color values for each picture in horizontal and vertical rows of plxcls in a
picture frame.
Intensity and color values for unexposed (dark) areas in each horizontal row of pl;{ejs for
offset correction in the row.
User control inputs.

i 5,
1

A color LCD dot matrix displays the picture before shooting. This enables manual atﬁ
of the view of the picture.
For shooting, a shutter button is pressed. Then a charge-coupled device (CCD)

of each CCD cell. :
A file creates after encoding (compression) and pixel co-processing as follows:

stream is preprocessed and then encoded in a standard format using a CODEC.
The encoded picture file can be saved for permanent record. A memory stick saves

. The file is used for display of recorded picture using a display processor and can by c?plcd

or transferred to a memory stick and to a computer connected through a USB poﬁ

. The LCD displays a picture file after it is decoded (decompressed) using the CODE Aexts
such as picture-title, shooting date and time, and serial number are also displayed.

. A USB port is used for transferring and storing pictures on a computer. Altertatively,
Bluetooth or IR port can be used for interfacing the computer. ' ‘
Power Dissipation: Battzry operation. Battery recharging after 400 pictures (ass eﬂ)

Performance: Shooting a 4M pixel still picture in 0.5s. 25 pictures per m (assu
Process Deadlines: Exposing camera process in a maximum of 0.1s. Flash sy
with shutter opening and closing. Picture display latency, maximum of 0.5s.

camera user through fingers on touchscreen, switches and buttons.

All user commands must function correctly.




4.

10.
11.

11.2,
Digital

class
shows

De#l%l Examples and Case Studies of Program Modeling and Programming with RTOS-1

The CCD cells charge up on exposure to light. The charging of each red or green or blue cell of a pixel
is according to light inte;-ity and color at that point in the picture. Three analog outputs to the system
are generated for each pixel. Each analog output has to be first converted into bits for processing at the
next stage [Section 1.3.7]. ADC operations thus take place for recording the picture that focuses on
the cells. Each cell analog output is an input to the ADC which creates bytes for processing further.
Each ADC byte corresponds to each value of the analog current which is as per the exposed intensity
and color of a cell. This operation is called preprocessing.

ADC operati~.s also take place for unexposed additional cells for the plxels. These pixels are adjacent
to the foeused frame in a vertical strip consisting of horizontal rows. These enable measuring the
average dark (zero intensity) current value of output for each row of the picture frame. This average is
subtractz=d as the offset dark current for each row of bytes obtained in Step 4. An average is taken after
ADC conversions for each cell in the strip and averaging the values of bytes for the row. This subtraction
operation for each row of bytes of the picture frame is also a part of preprocessing.

Bytes from preprocessing operations in Steps 3 and 4 for each cell for the picture pixels are stored in
a file after compression. The processed signals are compressed using a JPEG CODEC and saved in
one jpg file for each picture frame. [JPEG stands for Joint Photographic Experts Group]

The jpg file is created after JPEG encoding (compression) of bytes from the picture processor. The
preprocessed bytestream is compressed using discrete cosine transformations (DCTs). Usually, integer
arithmetic is used for saving the processing time at the expense of some inaccuracy in computations,
with an advantage of a reduced number of VLSI gates in the preprocessor circuit of CCD bytestream, fast
processing (about 6 times) and reduced battery energy (about 6 times). [Frank Vahid and Tony Givargis,
Embedded System —A unified Hardware / Software Introduction, John Wiley and Sons, Inc. 2002]
However, the inaccuracy is not perceptible to human eyes. After the DCTs, quantization is done and
then Huffman coding does the compression in JPEG format. Quantization means, for example, division
by 2 or 4 or 8 at the expense of reducing stored image resolution in order to create a smaller size file.
The jpg file is stored from a memory address in a memory block. A block(s) is reassigned to each file.
Pictures and GUISs are shown on a colored LCD dot matrix screen. For display from the file obtained
in Step 5 for the picture, the original bytes before encoding are retrieved back for decoding
(decompression) operation using CODEC and display co-processor. The decompression operation on
the file is by inverse DCTs.

The file is used for display through a display processor. A pixel display co-processor is used for
displaying the pictures directly or after rotate right, rotate-left, move up, move-down, shift left, shift-
right, zoom, stretch, change picture to next file and reprocess for display, and change to previous file
and reprocess for display.

The JPEG file can be copied or transferred to a memory stick using a controller, and to a computer
connected through USB port controller. Sony memory stick Micro (M2) has a size of 15 X 12.5 x
1.2 mm and has a flash memory of 2 GB, 160 Mbps data transfer rate [Section 1.3.5].

A USB port is used for interfacing a computer for transferring and storing pictures on a computer. A USB
controller is used for transfer. Alternatively, a Bluetooth or IR port can be used for interfacing the computer.

2 Class Diagrams

camera file creation, display and transferring to printer, memory stick and USB port can be modeled by the -
agrams of abstract class Picture_FileCreation, Picture_FileDisplay, and Picture_FileTransfer. Figure 11.8
ee class diagrams of Picture_FileCreation, Picture_FileDisplay and Picture_FileTransfer for creating a

JPEG file, displaying the picture and transferring the file to the memory stick, printer and USB port.



i T Embedded Sy*tqms

1 ExposedArea__
CCDBytesStream
1 Picture_FileCreation
Task CCD DarkArea_
1 Preprocessor CCDBytesStream

1 ) 11

'Task__PlctureProcessor % Task_Decoding |/
1

Task_DisplayProcessor 1

; 1) Picture_FileTransfer ]
[ Task_Printer 1 1
1

| Task_USBPort

Picture_FileDisplay

Taskaisplay

[ Task_Memor;Stick

Fig. 11.8 Three class diagrams of Picture_FileCreation, Picture_FileDisplay, Picture_FileTransfer

1.

Drawing the class diagram for Controller_Tasks is an exercise for the reader.

11.2.3 Digital Camera Hardware Architecture

Picture_FileCreation is an abstract class from which an extended class(es) is derived to create 4 JPEG
encoded picture. The task objects are instances of the classes ExposedArea_CCDBytesStream,
DarkArea_CCDBytesStream, Task_CCD Preprocessor, Task_PictureProcessor and Task_Encoding.

. ExposedArea_CCDBytesStream is to create a bytestream from the ADC outputs from the exposed

cells in each row of the picture frame.
DarkArea_CCDBytesStream is to create a bytestream from the ADC outputs from the unexposed
(dark area) cells in each row of the picture frame.

Task_CCD Preprocessor creates a stream after the subtraction of the average of bytes for each fow of
bytes in output from DarkArea_CCDBytesStream from the stream for rows in outpyt of
ExposedArea_CCDBytesStream.

Task_PictureProcessor creates a stream after processing the Task_CCD Preprocessor for picture
brightness, contrast and color adjustment.

Task_Encoding creates Huffman encoding for JPEG encoding and creates a filestream for saving onto
internal flash or memory stick.

Picture_FileDisplay is an abstract class which extends three classes Task_Deco¢ding,
Task_ DisplayProcessor, Task_Display.

Picture_FileTransfer is an abstract class which extends three classes, Task_Printer, Task_UABPort,
Task_MemoryStick.
Controller_Tasks which extends to the following tasks: (i) Tasks_Initialization for initialization of
tasks, (ii) Tasks_Shoot for shooting tasks, (iii) Initialize_Picture_FileCreation to initializg CCD
processor (CCDP), (iv) Initialize_Picture_FileDisplay tasks, which initiates display processor (DisplP),
(v) initiates processor (MemP), (vi) initiates processor PrintP, (vi) initiates USB port processor (USB_P),
(vi) Task_Lightlevel for control level control, (vi) Task_flash.

The digital camera hardware was described in Section 1.10.4. The camera embeds the following hagdware
units. It has keys, shutter, lens and charge-coupled device (CCD) array sensors, LCD display unit, a self-timer




/

& xamples and Case Studies of Program Modeling and Proéramming with RTOS-1

r flash, internal memory flash to store OS, embedded software and memory for limited number of

T, CCD preprocessor with fixed point DCT and CODEC. The book also described design metrics—
ance, energy and cost considerations for each. Figure 11.9 shows a digital camera hardware architecture.

Microcontroller
™ Compuer

MUX I To Printer
and

ADC - CcoP ! DispiP | ToLCD
dot matrix

I
Array controller

To Flash-Memory Stick

Fig. 11.9 Digital camera hardware architecture

1. |A microcontroller executes the Controller_Tasks. The controller tasks are the following: (i)
Task_LightLevel control (i) Task_flash (ii) initialization of tasks, (iii) shooting task, (iv) initiates
Picture_FileCreation tasks, which execute on a single purpose CCD processor (CCDP) for the dark
current corrections, DCT compression, Huffman encoding, DCT decompression, Huffman decoding
and file save, (v) initiates Picture_FileDisplay tasks, which execute on a single purpose display processor
(DisplP) for decoded and compressed file image display after the required file bytestream processing
for shift or rotate or stretching or zooming or contrast or color and resolution, (v) initiates memory
stick save on a notification from Picture_FileTransfer file system object using a single purpose transfer
processor (MemP), (vi) initiates printing on a notification from Picture_FileTransfer using a single
purpose print processor (PrintP), and (v) initiates USB port controller on a notification from
_ |Picture_FileTransfer using a single purpose USB process (USB_P).

2. [Multiple processors (CCDP, DSP, Pixel Processor and others)—a DSP does compression using the
discrete cosine transformations (DCTs) and uecompression by inverse DCTs. After DCTs, it also does
the Huffman coding for the JPEG compression. This operation is done using an ASIP (single purpose
processor) and is called CODEC (Section 1.2.4).

RAM for storing temporary variables and stack

ROM/Flash for application codes and RTOS codes for scheduling the tasks

5. {Flash memory for storing user preferences, contact data, user address, user date of birth, user
identification code, ADC, and Interrupt controller

6. |LCD dot matrix display

Memory stick

8. |Battery

> w

~




R  Embedded S*&ms

11.2.4 Digital Camera Software Architecture

The camera embeds the following software components. Figure 11.10 shows the software architectyre.

There are the following layers:

System layer
System services, for example, display text with the picture, flash start and stop after timeout of an auto timer,

ving
and retrieving of processor internal registers, and OS services such as IPCs (inter-process communicatiom )

. Application layer

System switches, button and control tasks. Examples are flash, light, contrast and image view before shooting

Function layer

For application layer tasks functionality using Picture_FileCreation, Picture_FileDisplay and Picture_FileTransfer

Presentation layer

Standard access to image file, examples are the default settings of image contrast, resolution, and outputs, display|color
setting, sound of clicks, time and date display, dot-matrix or touchscreen driver, ADC output format and data outpluts

Control layer
Controller_Tasks, timer control and real-time control modules

Base layer

Sli (serial interface), ADC, USB port

Standard access to the internal devices in the microcontroller. Internal device examples are timer, real-time clock,

Fig. 11.10 Software layers in software architecture of a camera system

System layer System layer provides system services, for example, display text with the picturg, flash
start and stop after timeout of an auto timer, saving and retrieving of processor internal registers, and OS

services such as IPCs (inter-process communication).

Application layer Application layer is for system switches, button and control tasks. Examples are

flash, light, contrast and image view before shooting.

Function layer Function layer is for application layer tasks functionality using Picture_FileCreation,

Picture_FileDisplay and Picture_FileTransfer.

Presentation layer Presentation layer is for providing standard access to an image file. Exanzies are

the default settings of image contrast, resolution, outputs, display color setting, sound of clicks, time
display, dot-matrix or touchscreen driver, ADC output format and data outputs.

Control layer Control layer is for Controller_Tasks, timer control and real time control modul

d date

Base layer Base layer provides a standard access to the internal devices in the microcontroller. %emal

device examples are timer, real-time clock, SI (serial interface), ADC, and USB port.

Figure 11.11 shows a synchronization model for camera tasks using bytestreams as message quepes and

semaphores.



Des%rh.gExamples and Case Studies of Program Modeling and Programming with RTOS-1 537

Byte Stream
ISR_Shoot Picture_FileCreation ExposedArea_
Picture Task_PictureProcessor CCDBytesStream ,
L DarkArea_ Task_CCD .
CCDBytesStream Prep sor Task_Encoding Task_Save
Byte Stream Byte Stream

i i SemD SemDisP

gﬁg"':y—ﬁ'e emDecode Task_Decoding emuis Task_DisplayProcessor

SemDispl

T e ] [ |
] |

Task_USBPort
SemUSB 7

SemMem Task_MemoryStick l

Picture_FileTransfer

Fig. 11.11 Synchronization model for camera tasks

serin:

LN

CASE STUDY OF CODING FOR SENDING APPLICATION LAYER BYTE
STREAMS ON A TCP/IP NETWORK USING RTOS VxWorks

Embed(led systems find a large number of applications in data communication and networks. When a system
embedq the TCP/IP protocol APISs, it becomes Internet enabled. Many systems are Internet enabled in order
that the system communicates to other systems using the Internet.

A cdmmunication may be within the same system or between remote systems connected through the
network drivers. A communication may be from peer-to-peer or between client and server. Figure 7.11 showed
the fungtions of two sockets communicating through a stack. Socket A is usually a client socket and Socket B
is a seryer socket on a network. Each network socket is identified by a distinct pair of parameters, IP address
and port number. Inter-socket communication between two applications is exactly the same, whatever may be
the appllication and OS used. Many RTOSes including VxWorks provides inbuilt APIs for TCP/IP stack and
several| other network protocols.

Thelcoding given here in Example code 11.2 is already a part of VxWorks network APIs. VxWorks provides
the ABRIs (Application Interfaces) for networking. It has a library, sockLib for socket programming.
[Sectioh 7.15]. [The reader may refer to VxWorks Network Programmer’s Guide when using these APIs and
/3. The guide’s source is Wind River Systems (www.windriver.com)].
our objective is to learn the use of IPCs in multitasking RTOS through a case study, these APIs and
are not used here for creating a TCP stack. The present case study is given in order to learn from the
of TCP and UDP as to how a VxWorks RTOS programming environment can be used to develop

1.3

g

e a case of an embedded system in which the RTOS tasks communicate the TCP stacks from an
ion. An example of the application is HTTP or FTP. The latter communicates to a web server or
transfefs a file, respectively. A TCP/IP stack is a stack containing the frames communicated on the network
using 4 TCP/IP suite of protocols. A reader maS"a'gfer to the book Internet and Web Technologies by this




| ’ | ~ Embedded Systbms

author from Tata McGraw-Hill, 7% Reprint, 2007. It describes bit-wise formats of TCP segment, UDP gram,
IP packet, and SLIP and Ethernet frame. The application-layer bytestreams are formatted at the sudcessive
layers to obtain the final stack for the network. A stream format is as per protocol specifications{ for in-
between layers. A TCP stack typically has many frames into which a network driver writes the bytes.

Example 11.2 shows the application of RTOS for writing into the stack. We use VxWorks functions dds
in Section 9.3 for the present case. At another node (end point of the network), the priorities of the
receive the stack to retrieve the bytes put in by the application will obviously be in reverse order. C
that is left as an exercise for the reader.

The advantages of multitasking should become obvious by this example. An application may not output
the strings continuously. The tasks at the other layers can therefore also process concurrently dufing the
intermediate periods. :

The semaphores provide an efficient way of synchronizing the tasks of various priorities. The semaphores
are used as a mutex guard for the shared data problems when using the global variables for the I/O ireams.
The semaphores are also used as event flags. The use of VxWorks or any other tested RTOS simplifies the
coding as scheduling and IPC functions are now readily available at the RTOS.

11.3.1 Requirements

Figure 11.12(a) shows the requirements of a sub-system for application, which is transmitting a TCP/IP stack.
Figure 11.12(b) shows the scheduling sequences of the tasks during a TCP/IP stack transmission.

- — Application Task_Str Check
[ optoten ] "oy E v
Y Task_Out Stream
[ Out_Stream ] Transport —_—
— Layer Task_TCP Segment / Task_UDP Datagrgm
- g Internet
[ TcP ] [ _UobP | "laver Task_IP Pkt Stream

[ P ] Task_Net work Drv

(a) (b)
Fig. 11.12 (a) Sub-system for transmitting a TCP/IP stack from an application (b) The tasks and
their scheduling sequence during a TCP/IP stack transmission '

i
H

Requirements for creating a TCP/IP stack can be understood through a requirement table given in Table 11.4.

l

11.3.2 Class Diagram, Classes and Objects

TCP stack transmission can be modeled by a class diagram of abstract classes TCP_Stack. Figure 11.13 shows
class diagram of a TCP_Stack for sending a TCP or UDP packet to a socket. The diagram shows how the|classes
and objects of a class relate and also the hierarchical associations during the creation of TCP or UDP dat4 stream
and packets transmission. The task objects are the processes or threads that are scheduled by the RTOS} !
1. Task_TCP is an abstract class from which extended class(es) is derived to create TCP or UDP packet
to a socket. The task objects are instances of the classes (i) Task_StrCheck, (ii) Task_OutStredm, (iii)
Task_TCPSegment or Task_UDPDatagram, (iv) Task_IPPktStream (v) Task_NetworkDrv. !
2. Task_StrCheck is to check and get the string. f
3. Task_OutStream extends from the two classes Task_StrCheck and Task_TCP.




bquirement

Examples and Case Studies of Program Modeling and Programming with RTOS-1

le 11.4 Requirements for creating a TCP/IP stack

Description

Fungti

Purpose To generate a bytestream for sending on network using TCP or UDP protocol at transport layer

Inpus 1. Bytes from application layer
2. Notification SemTCPFlag and SemUDPFlag for selecting UDP socket or TCP socket,
respectively
Signjls, events After forming the packets at IP layer, SemPktFlag for network driver task
and hotifications
Outputs 1. TCP or UDP bytestream to destination socket

syst¢m layers. Tasks are scheduled in five sequences (i) Task_StrCheck, (ii)Task_OutStream,

Testiand validation 1. A loop back from the destination socket should enable retrieval of application data stream
conditions as originally sent

and IP protocol at network layer

ons of the An HTTP application data is to be sent after encoding headers at transport and network

(iii) Task_TCPSegment or Task_UDPDatagram, (iv) Task_IPPktStream (v) Task_NetworkDrv

2. Buffer Memory overflow tests

5

6

Class

% Task_StrCheck }_— TCP_Stack

| Task_OutStream [

.
‘{ Task_TCPSegment l/

1
l—| Task_UDPDatagram
1

1
% Task_|PPktStream |
1

| Task_NetworkDrv ]

Fig. 11.13 Class diagram of TCP_Stack for sending TCP or UDP packet to a socket

Task_TCPSegment creates a stream from TCP segment for IP layer. When datagram is to be sent then
Task_UDPDatagram creates a stream using from Task_OutStream output bytes.

Task_IPPktStream creates a packet using the stream Task_TCPSegment or Task_UDPDatagram.
It depends whether the application layer object posts SemTCPFlag or SemUDPFlag.
Task_NetworkDrv outputs the packets on the network.

The left-hand side of Figure 11.14 shows an example of class Task_OutStream. It demonstrates how

these kwo classes are shown using UML.

T

_OutStream has the following fields: (i) semFlag and SemMKey are two semaphores for IPC functions,

(ii) three integers for the numBytes, (for number of bytes to be transmitted from application layer), task ID
and tdsk priority, respectively, and text lines 1, 2 and 3, (iii) QutStreamInputID and applStr static strings for
the oyt stream ID and application data stream.



Embedded Systbms

Task_OutStream has three methods (functions in C)—msgQSend ( ) posts message string into a megsage
queue, TaskDelay ( ) delays the task and enables a low priority task to start, and TaskResume ( ) resumes.the

delayed task.

Object The right-hand side of Task_OutStream

Figure 11.14 is an example of semFlag,

an object based on classes SemMKaey:

Task_OutStream of which that OSEvent;

object is an instance and functional g"s':grﬁ?&t:as”d'

entity. An object is shown by a static Integer;

rectangular box with the object OutStreaminputiD,

identity followed by semicolon and appiStr: String;

glen the class 1denF1ty. ‘Object gssggj:;“: g')
ask_OutStreamAppl is an instance taskResume ( )

of Task_OutStream.

State Diagram Figure 11.15

shows a state diagram for Task_Stack. It demonstrates how UML state diagram is shown. A state di
shows a model of a structure for its start, end, in-between associations through the transitions and
events labels (or condition) with associated transitions. The state transitions take place between the
Task_GUI, Task_Display, TaskUser_KeypadInput, Task_Communication, Task_ReadPorts, Task_Re
Task_ExcessRefund, Task_Collect, Task_Deliver and Task_Display. The steps which are used for draw

state diagram are given in Section 11.3.3.

i HTTP or FLP application

Task_StrCheck

STAF semaphore : False
True

Task_OutStream

SemUDPFlag
SemTCPFlag @
True * True
] Task_TCPSegment | [ Task_UDPDatagram 1
Byte ' Taken Byte Taken
Stream in semMKey1 Stream in | semMKey1
Queue | Queue |

Byte Stream in QueueStreaminputiD

task_OutStreamAppl:
Task_OutStream

semFlag
numBytes
OutStreaminputiD
StrAppl

Str

taskPriority

Fig. 11.14 Class Task_OutStream and Object Task_OutSt

Byte Stream in

l Task_IPPKtStream Queue PktinputiD

SemPktFlag

[ Task_NetworkDrv task
Socket Stream in Queue @

Fig. 11.15 State diagram for TCP_Stack

True

eam

gram
hows
tasks,
fund,
ring a




i

Det

11.3

A TCH
only a
A sing
as add

The ri
define

q& Examples and Case Studies of Program Modeling and Programming with RTOS-1

3 TCP Stack Hardware and Software Architecture

stack will run on the same hardware as for the system which is networked with another system. The
ditional hardware needed is memory for codes, data and queue for data streams, packets and sockets.
e TCP packet or UDP datagram is of maximum 2! bytes. 2 MB (512 x 26 bytes) RAM can be taken
tional memory requirement.

ht-hand side shows software model for a TCP/IP stack. Tasks of TCP_Stack and their priorities are
as follows:

SOﬁVEHe Architecture The left-hand side of Figure 11.16 shows software architeure for a TCP_Stack.

HTTP or FTP application
Task TCP_Stack

Task_StrCheck /
/ { Application Layer ]

Task_OutStream ' Y

Task_TCPSegment / I Transport Layer l
Y

A Task_UDPDatagram | [ Network Layer |
Task_IPPktStream I Y

= | Data link Layer !

! Task_NetworkDrv task |

Socket Stream Queue
Fig. 11.16 TCP_Stack software architecture and TCP/IP model

Creating a List of Tasks, Functions and IPCs

L
2.

VxWorks user-task priorities are defined above 100 and in layer-wise sequence.

Let us set an IPC naming convention. An IPC starting with initial characters as ‘Sem’ means binary
semaphore and ‘SemM’ means mutex. An IPC for flagging an event will have four characters, ‘Flag’.
An IPC for resource locking has three characters, ‘Key’. A message queue identifier begins with the
character ‘Q’. A pipe identifier begins with four characters ‘pipe’.

.} Either SemTCPFlag or SemUDPFlag is given by the application task. 1t is as per the protocol to be

employed at the transmission control layer. The IPC SemFinishFlag is to be taken by the application
or any other task. It flags the intimation that the task of the message strings put into the pipe by the
network driver is finished. It is an acknowledgement. Another IPC SemFlag2 is to be taken by OutStream
as an acknowledgement that the stream sent to the driver has been successfully put into the pipe and
the new stream can be sent in the output.

TCP header differs from UDP header. The former facilitates the connection establishment, network
flow control and management, and connection termination by proper exchanges of parameters through
the network. TCP is thus called a connection-oriented protocol. The latter is a simple datagram message
to the receiver. UDP is thus a connection-less protocol. The task priorities in both cases are assigned
equal. Any of the flags, which specifies protocol, can be given (posted) by the application.

.| A datagram is an independent (unconnected to the previous or next) message stream of maximum size

216 bytes. UDP conveys only the source and destination port numbers, stream length and checksum to




|
|
E
|

Embedded Sysgtams

the ‘internet’ layer. The socket stream (output of this layer) has the source and destination port nymbers
as well as IP addresses. A packet from a socket is a message stream with a of maximum size of 2! bytes.
Each packet has an inserted IP header. The socket is identified by its IP address and port number.
6. The network driver forms the frame as per network-driver configuration.
Table 11.5 gives a list of tasks.

Synchronization Model for Multiple Tasks | HTTP Application

and Their Functions Figure 11.17 gives a l o Y

synchronization model to show how the tasks can be 2 aﬂ‘éft"

synchronized. The top layer is an application layer 8

in a TCP/IP network. Steps from the top layer are as = ¢ 1 STAF < ¢
£ 2: Sem TCP Fla

follows: @ Task Out | 2'Sem TCP Flag
@ Stream

Step A: Let a task, Task_StrCheck, check for N

avzflle.lbxhty (?f a stnng a't output frqm an appllcatlon. Task TCP Task UDP

This is the highest priority task during sending to the Segment Segment

net. If check shows string availability through a status 5 Sem TCP Fi \ s

flag semaphore, STAF, the task gives (posts) a - sem 49 5: Sem UDP Flag

semaphore to a waiting task, Task_OutStream. Let Task_IP Pkt Stream

the maximum size of the stream be maxSizeOutStream. * 6: Sem Pkt Flag

Step B: The waiting task unblocks on taking the

semaphore. It then reads a string and sends a byte
stream into a message queue. Let the SemFlag2 be Fig. 11.17 Model for how the tasks are being
the semaphore taken before sending the string from synchronized
application into the queue for the buffer, OutStream.

Let semaphore given by Task_StrCheck and taken by Task_OutStream be SemFlagl. Let the second t3sk use
the message queue, QutStream, for sending the strings from the application to the next waiting task. Let the
outstream give bytes to the message queue identified by QStreamlInputlD.

Step C: Next to the application layer, there is a transmission control layer in the network. It is the equjvalent
of transport layer in the OSI model. The task is next in priority. The application task posts two other semaphore
flags, besides STAF. One flag is to unblock a waiting task, Task_TCPSegment. It takes the semaphgre and
unblocks if this layer protocol is TCP. The other semaphore flag is to unblock another waiting task,
Task_UDPDatagram. It unblocks when this layer protocol is UDP.

Step D: Appropriate headers must be inserted at the front of the stream at the transport layer, and the ptream
formats into either a TCP segment or UDP datagram, depending on which task unblocks (undergoeg to the
running state), Task_TCPSegment or Task_UDPDatagram. The task puts the blocks, each of 256 bytes, blkSize
= 256 bytes, into a queue. This is necessary because if bytes are put into the queue, a time called context-
switching time for inter-task through RTOS will be added to the overheads. The overall execution tirhe' will
increase. Thus interrupt latencies also increase. [Refer to Section 4.6.]

Step E: A TCP segment or UDP datagram is too long compared to a block. The block size has to be opimised
later, during a simulation run of the codes. A bigger block size lets another task wait till a block is regdy for
sending. A smaller block size, on the other hand, increases the task-switching overheads and the ingerrupt
latencies. This task has a critica® section. Header bytes are inserted into this section at the queue front pn
bytes should be inserted by any other task at this stage. A mutex, SemMKeyl, protects the section by



De%i?{l Examples and Case Studies of Program Modeling and Programming with RTOS-1

543

locking. Let semaphores taken by TCP task and taken by UDP task be SemTCPFlag and SemUDPFlag,
respectively. Let the task give the blocks to message queue, identified by QStreaminputID.

Tal?le 11.5 List of Tasks, Functions and IPCs used in Example 11.2

Task Priority Layer in Action Taken IPC Posted IPC Output Byte
Funcion TCP/IP® Stream
Task_Str- 120 Application Get a string from - SemFlag1 None
Chec the application
Task_Out- 121 Application Read string and SemFlagl, QStream- Out-Stream
Strea put bytes into an SemFlag2 InputiD
output stream
Task_{TCP- 122 Transmission Insert TCP header ~ SemTCPFlag, OStream Out-Stream
Segment Control to the stream SemMKeyl, InputlD and
(Transport) QOStreamlnputID  SemMKeyl,
Task_UDP 122 Transmission Insert UDP header ~ SemUDPFlag, QStream Out-Stream
Datagtam control to the stream sent SemMKeyl InputlD,
(Transport) as a datagram QStreamInputID  SemMKeyl
Task_|PPkt 123 internet Form the packets SemMKeyl, SemMKeyl, socket-
Streamp (Network) of 216 bytes QOStreamInputlD ~ SemPktFlag,  Stream
QPktInputID
Task_Net- 124 Network Send the packets SemPktFlag, SemFinish- pipeNet
workDyrv Interface as the frames QPktInputID, Flag, Stream
(Data-link) SemMKeyl SemFlag?2
@ Corregponding layer name in OSI model is given in the bracket.
Step FiNext to the transport layer is the ‘internet’ layer. [It is a small ‘i’, not a capital, in internet. We are
referting to inter-networking, not the Internet.] It is the equivalent of the network layer in the OSI model. A

task,’

sk_IPPktStream, waits and unblocks on availability of a block from Task_TCPSegment or

Task_UYDPDatagram. Each packet has a maximum size of 26 bytes. This task is next in priority.
Task_IPPktStream is for forming an IP packet for transmission on the network through the network driver.
This tagk inserts (writes) an IP header into a socket stream, SocketStream, to a network socket. The task
inserts the header into the stream after the blocks received from the upper layer stack together in the packet.
This tagk also sends a semaphore flag when the packet is ready for delivery to the network driver. Let the
semaphore given by the task and taken later by Task_NetworkDrv be SemPktFlag. Let the task send the

packet

to a message queue, identified by QPktInputiD.

Step G| Next to the internet layer is the ‘network interface’ layer. It is the equivalent of the data-link layer in
the OSEmodel. Network driver task, Task_NetworkDrv, waits for the packet ready flag, SemPktFlag. When
the taskjis unblocking, it reads SocketStream and writes the frame, frame into a pipe, pipeNetStream. The pipe

at the
functio

iling bytes, trailBytes. The latter are usually for error control functions or frame terminal (end)
s. Let the task give the frame, one by one, to a pipe identified by pipeNetStream. Let the semaphore

stores F transmits the bytes at the frame header, frameHeader, at the SocketStream data or its fragment and
i

given by the task and taken later by the application task be SemFinishFlag, when no more bytes are available




Embedded S

for transmission. A semaphore SemFlag?2 is given by the task when a block of byte is ready. This lets
layer task unblock outStream and initiate the formation of packets whenever the RTOS schedules it

SLIP, PPP, Ethernet, and Token ring are examples of interface layer protocols. The frameHe
trailBytes are as per the protocol used by the driver. Certain protocols do not write any frameHe
example SLIP. Certain protocols do not wnte traleytes

VxWorks open, read and write functions are used as shown earlier in Example 9.26. The use of the lct ()
and close () functions for a file is analogous to that for a pipe [Section 9.3.4.12].
Exemplary configuration information in the file can be as follows: We can define, in the case of 4 serial
link, the following parameters:
(i) Protocol for the link (SLIP or PPP)
(ii) Host
(iii) Port
(iv) Baud rate
(vi) Number of bits per character, for Example, 8
(vii)) Number of stop bits, for Example, 1
A file can describe configuration as follows, in the case of an Ethernet card used as a network driver. The
first line format may begin with net. This specifies that the line be for specifying the network card ad
The next three words are then ‘Ethernet 3COM 0xXYZ'. This specifies that the network is Ethernet.
is made by 3COM. The card address at the system is hexadecimal XYZ. The next line format may begin with
IP. This specifies that the IP address should be defined at the line as the next word. The address is of the node
that connects to the network. If another connection exists with the same network driver, there may be another
line to assign another IP address. [An IP address is of 4 bytes. It is OXFFFFFFFF for a broadcasting conpection
to all nodes. It can also be conventionally written as 255.255.255.255].
A programmer designing the codes first prepares a list of tasks, the task priorities, the layers at which the tasks
function, actions by the tasks, IPCs for which each task or section waits (takes) before unblocking, IPC which it
gives (posts) to let another waiting section or task unblock and the output stream, which the task sends asfoutput.
Table 11.5 lists these. Then the coding is done. The following points are to be noted from the table.

11.3.4 Exemplaiy Coding Steps

The task objects in Figure 11.16 can be implemented as C functions in a VxWorks environment with C as
the programming language. VxWorks IPC functions can implement the synchronization model showipvn in
Figure 11.15. Following are the VxWorks coding steps for the task objects listed in Table 11.5.

Example 11.2

1. # include “vxWorks.h” /* Include VxWorks functions. */
# include “semLib.h” /* Include semaphore functions library. */ 5
# include “taskLib.h” /* Include multitasking functions library. */
# include “msgQLib.h” /* Include message queue functions library. */ i

S i




Deﬁ&i‘c) Examples and Case Studies of Program Modeling and Programming with RTOS-1

() r* Install a pipe driver. */
ude “netDrvConfig.txt” /* Include network driver configuration file for frame formatting protocol
P PPP, Ethernet) description card description/make address at the system, IP addresss of the nodes

JCIkRateSet (1000); /* Set system clock rate 1000 ticks per second. */

Initialise the socket parameters and other network parameters initial values*/

ePort means source port number of the application used. DestmnPort means destination
umber. Define a variable string, Str. */

ed short SourcePort; unsigned short DestnPort; unsigned char [ ] Str;

unsigned short SourcelPAddr = ;

ged short DestnIPAddr =

declare data types of Output Byte Streams for arguments in the tasks. */

igned char [ ] applStr, OutStream, socketStream, pipeNetStream;

5. )“ clare data types of the maximum sizes of streams from and to the tasks. Declare data type of block

locate Default Values to various sizes*/
izeOutStream = 1024 * 1024; /* Let application put 1 MB on the net. */

eplpeNetStream =16 * max817eSocketStream /* Let network dnver put 16 packets = 1 MB
imum number of bytes. */

'~ lare all Table 11.5 Task function prototypes. */

ask_StrCheck (SemID SemFlagl); /*Task check for the string Avallablhty */

fask_OutStream (SEM_ID SemFlagl, SEM_ID SemFlag2, MSG_Q_ID QStreamInputID);

: k IPPktStream (SEM_ID SemMKeyl SEM_] ID SemPktFlag, MSG_Q_ID QPktinputID);
‘ é: k_NetworkDrv (SEM_ID SemMKey1, SEM IDSemPktFlag, SEM IDSemFlmshFlag, SEM_ID



Embedded Syi*ems

Task_StrCheckStackSize = 4096;
int Task_OutStreamID = ERROR; int Task_OutStreamPriority = 121; int Task OutStreamOptlonsw
int Task_OQOutStreamStackSize = 4096; i
int Task_TCPSegmentID = ERROR,; int Task_TCPSegmentPriority = 122; 5
int Task_TCPSegmentOptions = 0; int Task_TCPSegmentStackSize = 4096;
int Task_UDPDatagramID = ERROR; int Task_UDPDatagramPriority = 122; ; ;
int Task_UDPDatagramOptions = 0; int Task_UDPDatagramStackSize = 4096; ;
int Task_IPPktStreamID = ERROR; int Task_IPPktStreamPriority = 123; :
int Task_IPPktStreamOptions = 0; int Task_IPPktStreamStackSize = 4096; i
int Task_NetworkDrvID = ERROR; int Task_NetworkDrvPriority = 124; o
int Task_NetworkDrvOptions = 0; int Task_NetworkDrvStackSize = 4096;
9. /* Create and Initiate (Spawn) all the six tasks of Table 11.5. */
Task_StrCheckID = taskSpawn (** tTask_StrCheck”, Task_StrCheckPriority,
Task_StrCheckOptions,

Task_StrCheckStackSize, void (*Task_StrCheck) (SEM_ID STAF, SEM_ID SemFlagl), 0, 0, O, Q
0,0, 0, 0); ¢
Task_OutStreamID = taskSpawn (“ tTask_OutStream”, Task_OutStreamPriority, Task_OutStream '1ns,
Task_OutStreamStackSize, void (*Task_OutStream) (SEM_ID SemFlagl, MSG_Q_ID QStreamI
applStr, OutStream, maxSizeOutStream, blkSize), 0, 0, 0, 0,0, 0, 0, 0, 0, 0);
Task_TCPSegmentID = taskSpawn (* tTask_TCPSegment”, Task TCPSegmentPri
Task_TCPSegmentOptions, Task_TCPSegmentStackSize, void (*Task_TCPSegment) (SEN

e ,9 -

P
e

char * TCPHdrLen, unsigned *TCPHdrFlags, unsigned short *TCPChecksum16, unsigned short
unsigned short *UrgPtr, unsigned char [optPdLen] extras)
Task_UDPDatagramID = taskSpawn (“ tTask UDPDatagram” Task UDPDatagramPn

SemUDPFlag, SEM_ID SemMKeyl MSG_Q_ID QStreamInputID unsigned char [ ] OutStrearh, int
maxSizeOutStream, int blkSize), SourcePort, DestnPort, 0, 0, 0, 0, 0, 0, 0, 0); Ry
Task_IPPktStreamID = taskSpawn (“tTask_IPPktStream”, Task_IPPktStreamP d
Task_IPPkiStreamOptions, Task_IPPktStreamStackSize, void (*Task IPPktStream) (SEM ID SemP%

ty,
ag,

[]SocketStream, max81zeSocketStream) 0,0,0,0,0, 0 0,0,0,0), f 1
Task NetworkDrvID taskSpawn (“tTask NetworkDrv” Task_NetworkDrvPriority, Fagk_

char [ ] frameHeader, unsigned char [ ] traleytes), 0,0,0,0,0,0,0, 0 0, 0);

10. /* Declare IDs and create the binary semaphore flags, keys and message queues. */
SEM_ID SemTCPFlag, SemUDPFlag; /* Declared at the application */ :
SemTCPFlag = semBCreate (SEM_Q_FIFO, SEM_EMPTY); /* Declared at the application */
SemUDPFlag = semBCreate (SEM_Q_FIFO, SEM_EMPTY); /* Declared at the application */ -
/¥ Note: The application posts wither SemUDPFlag or SemTCPFlag to let one of the two task# fun.




Examples and Case Studies of Program Modeling and Programming with RTOS-% 547

CPSegment or Task_UDPDatagram. */
} SemFlagl, SemFlag2, SemPktFlag, SemFinishFlag, SemMKey1; /* Declared for the six tasks
irf Table 11.5. */

optiops|selected to it. */
SemFldgl = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY); / *Task higher in priority takes it first. */
ldg2 = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY); / *Task higher in priority takes it first. */

SemPFirgshFlag = semBCreate (SEM_Q_FIFO, SEM_EMPTY); / *Taken in FIFO */

MSG_Q _ID QStreaminputiD;

void ¢hir [ ] msgStream; /* Pointer for the message buffer */

12. /4 (Freate the message queue identity and pass the parameters and chosen options to it. Let maximum
numbet of messages be 256 kB and the message be of 1 byte each. An IP packet has a maximum 216 bytes.
Assung that a TCP segment stream for transmitting has maximum of 256 kB. Let 64 bytes be additionally
assignefd for the headers. Header bytes add at the lower layers (refer column 3 in Table 11.5). */

QOStréapinputID = msgQCreate (maxSizeOutStream, strSize, MSG_Q_FIFO | MSG_PRI_NORMAL);
butlD = msgQCreate (maxSizeSocketStream, strSize, MSG_Q_FIFO | MSG_PRI_NORMAL);
S lécps 1 to 3 as per Example 7.21 for creating a pipe. */

Yatus = pipeDevCreate (“/pipe/pipeNetStream”, maxSizepipeNetStream, 1);
0 = 0x0;
gther declarations that are needed. */

int getLength32 (unsigned char [ ] Str) {
» for finding as an unsigned integer the length of a string or stream up to 2% bytes * /

2

unsignéd short getLength16 (unsigned char [ ] Str) {
/*C 1dps for finding, as an unsigned short, the length of a string or stream up to 2'6 bytes. * /

byte getLength8 (unsigned char [ ] Str) {
s for finding, as an unsigned byte, the length of a string up to 256 bytes. * /

4




548 Embedded S*aems

b L&
17. /* Declare Codes for adding extra padding in shorter size message or string or stream to fill
Os so that string size now equals block size, blkSize. */ ;
unsigned char [ ] StrAddPadding (unsigned char [ ] Str, unsigned int blkSize) { i

}.

18. /* Exemplary codes for finding a function to get 16 bit checksum from a byte
stream or string. */ '
unsigned short checksum16 (unsigned char [ ] Str) { 5
/* Codes for finding, as an unsigned integer, the length of a byte stream or string* /
/* StrPtr is pointer to the string or stream. For the while loop, ‘i’ is a 16-bit integer. Number of iC
generated = numCarry. */

static unsigned short *strPtr, i, numCarry;
static unsigned int sum = 0;

e R

}

|
%
unsigned short num = (unsigned short) getLength32 (unsigned char [ ] Str); /* num is 16-bit nuﬁbﬁr for

total number of bytes in the string. We are typecasting the length data type to 16-bit */
/* A 16-bit Checksum method is as follows: Sum the 16-bit words and first count the camef

H
i
!
|
|
3
g
%ITiCS

hich

generate on successive additions. Then add these carries to get the 16-bit checksum. Howeverf ¥w¢ are

having the byte stream. So method is as follows: */
strPtr = (unsigned short) Str; / Type cast address to 16-bit value pointer. */

i = num/2; /* Let us split the calculation into two parts because we are adding the bytes instead Gi LiG-bit

words to get the checksum*/

while (i —-) {

sum += *strPtr ++; /* add the byte into the sum and then pointer to next byte. */

if (i & 1){sum += *(unsigned char ¥) strPtr;}; /* Sum the odd byte from next address. */
while ((numCarry = (unsigned short) (sum >>16)) ! = 0) {sum = (sum & 0xFFFF) + numCarry); }
return ((unsigned short) sum); / Type cast sum to 16-bit. */

I8 i
/* Reader to write 32-bit checksum codes for function checksum32 by himself (or herself). */ :.

?

/* Declare a Function for Cycle Redundancy Check */

unsigned int CRC32 (unsigned int cre, unsigned char aByte) {/* Codes for finding 32-bit cycle redmciancy

check bits as an unsigned integer for the given message frame. * /

i

)

unsigned int, unsigned short, unsigned char, etc. Hence, the definitions of the following six functi

19. /* On a network, while we are sending the bytes a protocol uses the different data Lypes;:{ﬁ) as

the lower byte and higher byte from a 16-bit short, datal6 and to get four bytes byte0, bytel, bytes

g-

byte3 from a 32-bit int, data32 is essential. */

i
unsigned char LByte (unsigned short datal6) { ... }; unsigned char HByte (unsigned short datal§)

{...}h

get
and



: Examples-and Case Studies of Program Modeling and Programming with RTOS-1 549

i ed char byte0 (unsigned int data32) { ... }; unsigned char bytel (unsigned int data32)

{4k

unsipned char byte2 (unsigned int data32) { ... }; unsigned char byte3 (unsigned int data32)

{ +4h

Il ?; *
i

200 i‘_}27./* Code for other declaration steps specific to the various networks */

#d of the codes for creation of the tasks, semaphores, message queue, pipe tasks, and variables and all
nepded function declarations */
' 4 ('*************************************************************************/

' Start of Codes for Task_StrCheck*/

> (1) { /* Start of while loop. */

' n character output is generated by the application, the semaphore is given. */
fake (STAF, WAIT_FOREVERY); /* Wait for Status flag from Application. */

™ Codes for the task. *

;A ile (1) { /* Start an infinite while-loop. We can also use FOREVER in place of while (1). ¥/

’ *Walt for SemFlag] state change to SEM_FULL by semGive function for string availability check
task
set e (SemFlagl, WAIT_FOREVER);

 Take the key to not let any application other than the present task put the message into the

ke (SemMKeyl, WAIT _FOREVER); /* SemMKeyID is now not available and the critical
M starts */



Embedded Syi#ms

36. /* Codes for Encrypting applStr if any or illegal character or message check, if any */ 1

37. /* At the end, send the byte input at OutStream as message to queue, QStreamInputID. Refcréto

Section 9.3.4. for understanding the msgQSend function. NO_WAIT if string is more than the block s'flze
256 bytes. Otherwise string is too short to deserve sending on the stream without padding it with extrp §s.
H

Call a function to add padding bytes. */
numBytes = getLength32 (applStr);
if (numBytes < blkSize) {StrAddPadding (appiStr, blkSize); numBytes = blkSize};

Task_IPPktStream does that. It posts SemFlag2 on successfully sending the applStr into the stream
two transport and internet layer headers. */

semTake (SemFlag2, WAIT_FOREVER); ‘

msgQSend (QStreaminputID, applStr, numBytes, NO_WAIT, MSG_PRI_NORMAL);};

semGive (SemMKey1); /* Critical Region ends here. */}

38. /* Resume the delayed task, Task_StrCheck as message has been put into the message queue. */
taskDelay (20)

taskResume (Task_StrCheckID);

. I* Other remaining codes for the task. */

/* Now wait if any of the previous bytes of applStr have not been put into the socket stret’ins.

5

39. } /* End of the codes for Task_OutStream. */
40. /* Start of Codes for Task_TCPSegment. */ ‘,
void Task_TCPSegment (SEM_ID SemTCPFlag, SEM_ID SemMKey1, SEM_ID SemFlag2, MSG_(

QStreamInputID, OutStream, maxSizeOutStream, blkSize, unsigned char [16] txtcpState, un51gned C

[16] txtcpOpPdFormat) {
41. /* Initial assignments of the variables and pre-infinite loop statements that execute once only*/ -
static int numBytes; /* Number of bytes successfully read. Equals error on timeout or message queur,
not identified. */

static int timeout = 20; /* Let after 20 system clock-ticks 20 ms*/

unsigned char [16] txtcpState;

unsigned char [16] txtcpOpPdFormat; 8
unsigned char [ ] OptionAndPds (unsigned char [16] txtcpState, unsigned char [16] txtchdeFo
unsigned char [optPdLen] extras; ;

unsigned char [ ] Str;, unsigned int SequenNum, unsigned int AckNum, unsigned char * TCPHdrLen, unsx np

*TCPHdrFlags, unsigned short window, unsigned short *TCPChecksum16, unsigned short *U
unsigned char [optPdLen] extras); 4
static unsigned char [ ] header; !
unsigned char [ ] TCPHeader (unsigned short SourcePort, unsigned short DestnPort, unsigned char
[16] txtcpState, unsigned char [16] txtcpOpPdFormat, unsigned char [ ] Str, unsigned int 4
SequenNum, unsigned int AckNum, unsigned char * TCPHdrLen, unsigned *TCPHdrFlags,
unsigned short window, unsigned short *TCPChecksum16, unsigned short *UrgPtr, unsigned
char [optPdLen] extras;

th
|

fr,




Deisim Examples and Case Studies of Program Modeling and Programming with RTOS-1 @

42§ hile (1) { /* Start task infinite loop. */

/* ke mutex so that till header is inserted into the stream, it is not released to

Tabk] OutStream. */

semTake (SemTCPFlag, WAIT_FOREVER);

seffn (SemMKeyl, WAIT_FOREVER); /* SemMKeyID is now not available.
Wiaitlfor entering critical region*/

43; /¥ Receive the message sent by Task_OutStream */

numBytes = msgQReceive (QStreamInputID, OutStream, maxSizeOutStream, 20);
if (ngmBytes '= ERROR) {

44. /¥ Code for defining the txtcpState as per the connection status. */

r* t&de for defining the SequenNum as per txtcpState */
/* Cdde for defining the AckNum as per txtcpState */
/* €qde for defining the window as per txtcpState */

/* €dde for defining the txtcpOpPdFormat as per txtcpState */

45../1 Codes for finding the additional integers as options and padding to be put as the header. */
= OptionAndPds (txtcpState, txtcpOpPdFormat);
Codes for retrieving the TCP header bytes */
head¢r = TCPHeader (SourcePort, DestnPort, txtcpState, txtcpOpPdFormat, OutStream, SequenNum,
AcRMum, * TCPHdrLen, *TCPHdrFlags, window, *TCPChecksuml6, *UrgPtr, extras);
47.//1 Send header into the front of the queue */
msé Send (QStreamInputID, header, getLength32 (header), NO_WAIT, MSG_PRI_URGENT);
48./4 Send data to the back of the queue */
msﬁ end (QStreamInputID, applStr, numBytes, NO_WAIT, MSG_PRI_NORMAL);
I /?‘ d of the message handling codes. */
semCive (SemMKey1); /* Critical region ends here. */}
senﬁ ive (SemTCPFlag); /* SemTCPFlag. */
taskDlelay (20);
taskRsume (Task_OutStream);
}; /* Bnd of while loop. */
49. {} * End of codes for Task_TCPSegment */
50. /4 Start of codes for Task_UDPDatagram */
void Task_UDPDatagram (SEM_ID SemUDPFlag, SEM_ID SemMKey1, SEM_ID SemFlag2,
MSQ;Q_ID QStreamInputID, OutStream, maxSizeOutStream, blkSize) {
51. {*{Initial assignments of the variables and pre-infinite loop statements that execute once
only*f




@ Embedded S*ns

static int numBytes; /* Number of bytes successfully read. Equals error on timeout or if 5
message queue ID not identified. */
static int timeout = 20; /* Let after 20 system clock-ticks 20 ms*/ 1
static unsigned char [8] header; i
unsigned char [8] UDPHeader (unsigned short SourcePort, unsigned short ;

DestnPort, unsigned char [ ] OutStream); 1

52 while (1) { /* Start task infinite loop. */
/* Take mutex so that till header is inserted into the stream; it is not released to Task OutStream. */
semTake (SemUDPFlag, WAIT_FOREVER);
semTake (SemMKeyl, WAIT_FOREVER); /* SemMKeyID is now not available. Wait for enter@g he
critical region*/ :
53. /* Receive the message sent by Task_OutStream */

numBytes = msgQReceive (QStreamInputID, OutStream, maxSizeOutStream, 20),
if (numBytes != ERROR) {

54. /* Codes for retrieving the UDP header bytes */

header = UDPHeader (SourcePort, DestnPort, OutStream); 55. /* Send Header to the front of the qqquy ¢ */
msgQSend (QStreamInputID, header, 8, NO_WAIT, MSG_PRI_URGENT);

56. /* Send Data to the back of the queue */

msgQSend (QStreamInputID, applStr, numBytes, NO_WAIT, MSG_PRI_NORMAL);

}; /* End of the message handling codes. */

/* Critical Region ends here. */

57. semGive (SemMKeyl);

semGive (SemUDPFlag); /* SemUDPFlag release for use in new application string, applStr. */
58. /* Let lower priority task, Task_IPPktStream start Higher priority one resume. */ i
taskDelay (20); i
taskResume (Zask_OQOutStream); 4
}; 1 * End of while loop. */
59. } /* End of codes for Task_UDPDatagram */ !
60. /* Start of Codes for Task_IPPktStream */ 4
void Task_IPPktStream (SEM_ID SemFlag2, SEM_ID SemPktFlag, MSG_Q_ID QPktInput}p; int
maxSizeOutStream, int blkSize, unsigned short SourceAddr, unsigned short DestnAddr, unmgn{glhort
IPverHdrPrioSer, unsigned char [16] txipState, unsigned char [16] txipOpPdFormat, unsign .dhar
*timeToLive, unsigned char *PrctlField) { \
61. /* Initial assignments of the variables and pre-infinite loop statements that execute once only*{ [
static int numBytes; /* Number of bytes successfully read. Equals error on timeout or if message q- e
ID not identified. */ &
static int timeout = 20; /* Let after 20 system clock-ticks 20 ms*/

static unsigned char [8] header; unsigned char [ ] Str;

unsigned char [ ] IPHeaderSelPkt (unsigned short SourceAddr, unsigned short DestnAddr,
unsigned short IPverHdrPrioSer, unsigned short *IPPktLen, char * IPVerHdrLen, unsigned
char * IPHdrLen, unsigned char *IPHdrFlags, unsigned short *IPHdrFrag, unsigned short
*IPChecksum16, unsigned short UniqueID, unsigned char *timeToLive, unsigned char

o e R AT




Desibn |Examples and Case Studies of Program Modeling and Programming with RTOS-1 @

*Prcf

ield, unsigned char [ ] Str, unsigned char { ] OutStream, char [optPdLen] IPextras,
unsigngd char [16] txipState, unsigned char [16] txipOpPdFormat);
62. while (1) { /* Start task infinite loop. */

/* Tak¢e mutex so that till header is inserted into the stream,; it is not released to

Taski QutStream. */

semBake (SemMKeyl, WAIT_FOREVER); /* SemMKeyID is now not available. Wait for entering critical
regi

63. /¥ Receive the message sent by Task_QutStream */

um$ s = msgQReceive (QStreamInputID, OutStream, maxSizeOutStream, 20);
Bytes != ERROR) {
odes for retrieving the IP Packet header bytes */ .
= IPHeaderSelPkt (SourceAddr, DestnAddr, IPverHdrPrioSer, *IPPktLen, * IPVerHdrLen, *
en, *IPHdrFlags, *IPHdrFrag, *IPChecksum16, UniquelD, *timeToLive, *PrctlField, Str,

Out§ , IPextras, txipState, txipOpPdFormat),
65. /¥ $end Header into the front of the queue */
msgQSend (QPktinputID, header, * TPHdrLen, NO_WAIT, MSG_PRI_URGENT); };

66. /¥ $end data to the back of the queue */

numBytes = *IPPktLen — * [PHdrLen;

msg@ d (QPktinputlD, Str, numBytes, NO_WAIT, MSG_PRI_NORMAL);};

/* Further send header and Str bytes into the queue if more IP packets are to be sent */

section ends here. */}
ive (SemMKey1);
sem@iye (SemPktFlag); I* SemPktFlag release for use in Network Driver Task. */

) /* %ngof the message handling codes. */

taskRebume (Task_UDPDatagramiD);

tas :v-.. me (Task_TCPSegmentID);

* Btart of Codes for Task_NetworkDrv. */
void Tesk_NetworkDrv (SEM_ID SemMKeyl, SEM_ID SemPktFlag, SEM_ID SemFinishFlag, SEM_ID
SemFlgg2, MSG_Q_ID QPktInputID socketStream, unsigned char [ ] pipeNetStream, int blkSize, int

71. /¥ Peclare data type for specifying the headers. Let header length of frame be length; type of

ok driver be netDrvType; and fragment offset at the stream be frameOffset, which specifies the
1 the byte array from which a frame starts in case the stream is sent in fragments. */

char [ ] frame, frameHeader, trailBytes, fragment, trailBytes;

tiField;



554 Embedded s*stems

unsigned int *FrameCRC32; i g
unsigned char [ ] Str, unsigned char [ ] SocketStream, unsigned char [ ] FRextras, A4
unsigned char [16] txFRState, unsigned char [16] txFROpPdFormat, unsigned char o
[12] netDrvType |
72. /* Declare Network Driver Function. */ 1
void NetHdrFrTr (unsigned char [ ] frame, unsigned char [ ] frameHeader, unsigned char [ ] tra
unsigned short fragOffset, unsigned char [ ] fragment, unsigned char [ ] trailBytes, unsigned short *
unsigned short * HdrLen, unsigned short * endLen, unsigned short *FrameHdrFlags, unsigné
*FrameHdrFragOffset unsigned short * FrameCRC32, unsigned short *PrctiField, unsigned char
unsigned char [ ] SocketStream, unsigned char [ ] FRextras, unsigned char [16] txFRState, unsi
[16 ]} xFROpPdFormat, unsigned char [12] netDrvIype); ]
73. /* Integers for number of bytes successfully read, message size and file device, respectxvely .
int numBytes, 1Bytes, fd;

74. /* Let a pointer netDrvConfig define a pointer to a configuration file for a network driver. */
int fd; /* Define an integer for a file device. */
fd = open (netDrvConfig.txt, O_RDWR, 0); /* Refer Step 5 Example 8.26. */ i
75. /* Code for reading netDrvType, protocol for the link (SLIP or PPP), data link layer fomjm (say
Ethernet), host IP, port, baudrate, card specifications, etc. Use 1Bytes and function, read as follows. §/
IBytes =12; /* Let the first message bytes read = 12*/ ]
numBytes = read (fd, Str, IBytes); 1

close (fd); i
75. /* Open the pipe for the Network Stream. Refer Step 5 Example 8.26. */ ;
fd = open (“/pipe/pipeNetStream”, O_RDWR, 0); W
76. while (1) {; ;

/* Task reads SocketStream on unblocking and writes the frame, frame into a pipe, pipeNetStrey

pipe stores and transmits the bytes at the frame header, frameHeader, and frame fragment frpm the
SocketStream in case frame is of smaller size than the SocketStream and at the end trailing bytes, trg§Bytes.
The latter are usually for error control functions or frame terminal (end) functions. Let the task | J the
frame one after another to a pipe identified by pipeNetStream. This lets the next layer task unblock oytStream

and initiate the formation of packets whenever the RTOS schedules it. */ i
semTake (SemPktFlag, WAIT_FOREVER); 1
semTake (SemMKeyl, WAIT_FOREVER); i
77. I* Receive the message sent by Task_IPPktStream */ .
numBytes = msgQReceive (QStreamInputID, SocketStream, maxSizeOutStream, 20); :
if (mumBytes '= ERROR) { ‘
78. /* Codes for retrieving the frame bytes */ 1
NetHdrFrTr (frame, frameHeader, trailBytes, fragOffset, fragment, trailBytes, *FRlength, * Hereu;
“*endLen, *FrameHdrFlags, *FrameHdrFragOffset, *FrameCRC32, *PrctiField, Str, SockctStream,
FRextras, txFRState, txFROpPdFormat, netDrvIype);

/* Write a message, info of 1Bytes. */

unsigned char [ ] info; /* Let the message be a string of characters. */ 4
int [Bytes;
IBytes =12; R

!

%
i




3n Examples and Case Studies of Program Modeling and Programming with RTOS-1 555

rifé (fd, frame, *FRlength);
Further write into the pipe if more frames are to be sent */

End of While-loop */
/* End of codes for Task_NetworkDrv */
of codes for Task_NetworkDrv. */

Declare a Function for returning a UDP header string. DatagramLen means length of UDP datagram,
transmits to the next layer. Str means the stream or string from the application layer to be sent with

i ,‘;bodes for returning UDP Header String. Remember that UDP protocol transmits the integers with big
dgan. Refer to paragraph (1) in the instructions for a hardware designer in Section 2.1. Big endian means
most significant bytes transmit first. * /

gned char [8] UDPHStr;

pned short Datagraml en = getLength16 (Str) + 8; /* Add 8 byte header length also. */

ed short UDPChecksuml16 = checksum16 (Str);

PHStr [0] = HByte (SourcePort); UDPHStr 1= LByte (SourcePort);

PHStr [2] = HByte (DestnPort); UDPHStr [3] = LByte (DestnPort);

UDPHStr [4] = HByte (DatagramLen); UDPHStr [5] =LByte (DatagramLen),

UDPHStr [6] = HByte (UDPChecksum16); UDPHStr [7] = LByte (UDPChecksum16);

refufn (UDPHStr);

Bt

/* */

m from the application layer at a node, node] end to be sent with TCP protocol to other end, node2. */
ine the byte position (index) of the present OutStream bytes from the application. Initial value = 0*/
med int SequenNum = 0;

‘fme the total number of bytes already received at an input stream from node2 to this nodel. Input
m is the one that was sent as TCP stacks and received at the nodel from the receiver node2. This is to
} outstream simultaneously convey to the other end an acknowledgement along with a new sequence
tes. OutStream and input stream synchronize and there is controlled flow of bytes between the two

enids, nodel and node2. Initial value = 0. */
uris ned int AckNum =0;
/*Digclare 4-bit and 4-bit unused, reserved for future expansion. TCP headers vary between 5to 15 unsigned

inte; ers of 32-bit each. */



|
I
f
|

556 : Embedded

unsigned char *TCPHdrLen;, 1
/* Let 16-character string txtcpState specify the state of transmission of the current TCP segment afd!i
action required for the controlled transmission. Action is to be as desired. It may be to establish a conn f ibn,
for termination or management or flow control. Refer to TCP protocol in any standard text for defi ions.
unsigned char [16] &xtcpState; 1
/* Declare TCPHdrFlags for 6 bits for flags and 2 bits unused and reserved for future modificatih
protocol. Bit 0 is FIN, bit 1 is SYN, bit 2 is RST, bit 3 is PUSH, bit 4 is ACK and bit 5 is URG. */ "\‘ '
unsigned char *TCPHdrFlags;

/* Let another 16-character string txtcpOpPdFormat specify format, which gives the number and mé
of optionally added integers and padded integers. For example, an optional integer may be to specify
alternative window of 32 bits in place of 16 given in the 16-bit window field at fourth integer in thé
header. Another option integer may specify the TCP maxSizeOutStream. */ ‘
unsigned char [16] extcpOpPdFormat, !
4. /* Start of the codes for returmng a short. It specifies the 4-bit TCP Headcr length field as well i

&TCPHdrFlags, & TCPHdrLen) { 11
Boolean bit 15, bit 14, bit 13, bit 12, bit 11, bit 10, bit 9, bit 8; i
5. /* Codes to have four bits, bit 15, bit 14, bit 13, bit 12 in the returned integer as per the TCP heade \ e,
w}uch specnﬁes the total number of unsigned integers in the TCP header. The total is 5 plus the un: _‘ i

that is transmitting. The bits, b1t 11, bit 10, bit 9, bit 8 are reserved. */
/* Bits 0 to 5 are as per six flags. Bits 6 to 11 are reserved. Bits 0 to 7 are at unsigned character v"
TCPHdrFlags. */

*TCPHdrFlags = *TCPFlags (txtcpState); /* Using the function find bits O to 7, */

[RIRer

i g R s

R ;:g;‘.;wt.‘

6. /* Code to find TCPHdrLen from bit 15, bit 14, bit 13, bit 12. */

A

J; * End of the codes for returning an integer that specifies TCP Header length and flag
fields. */
7. /* Declare a function TCPFlags to return TCPHdrFlags as per txtcpState. Start of the codes
for finding the byte to represent the TCP flag fields. */
unsigned char *TCPFlags (unsigned char txtcpState) {
Boolean FIN, SYN, RST, PUSH, ACK, URG, bit 6, bit 7;
/* Codes to create as per txtcpState in which TCP segment is transmitting. */

J; /* End of the codes for returning the pointer for a byte for the TCP flags field. */
8. /* Declare other TCP Header fields. */
unsigned short window; /* nodel specifies by window as an advertisement to node2 how many more-
at nodel can be buffered in its buffer beyond the ones already buffered and acknowledged by no




D*i bn Examples and Case Studies of Program Modeling and Programming with RTOS-1 557

node. Buffering is an intermediate state in which bytes are still to be sent to an upper application layer by
a TR stack receiving entity. Node 2 if finds window = 0 or too small a number, then it should not send any
thipg to this nodel. This 16-bit field then is a request to the other end node not to flood data bytes on the
nepwkirk unnecessarily. It is then indirectly a request to wait. */
ungigped short *TCPChecksumI6; /* Define 16-bit Checksum. */
/* Dpfine a 16-bit Urgent pointer. */
unpigped short Urgent; .
/ %A{16-bit value that will indicate an urgency to node2 whenever the URG flag is set. It indicates the first
bytelof the start of the urgent data from nodel. It is a request to the node? that it should consider the pointed
bytef first in place of attending to the bytes in the buffer and the bytes after this segment header. The
buffbred data and beginning data may be ignored and bytes beginning from UrgPtr are requested to be
- givefy urgency. Given or not depends on node2 program task at TCP segment that sends the bytes to its
application layer. */
unsipned short *urgPtr = Urgent;
unsikned short *TCPURGENT (unsigned char txtcpState, & TCPHdrFlags, *urgPtr) {
Baojean URG;
URG = getFlag (&TCPHdrFlags) {
/ * Godes to extract the URG bit. It is bit 5 of byte at address of TCPHdrFlags.

)
/* .JFURG i true, then set the urgent field and return a 16-bit short. Codes to return a 16-bit short as urgent
painter as per txtcpState in which TCP seginent is transmitting. */
if (YRG) {

t

Bl
uts gned char [ ] extras; unsigned char OptPdLen;
e}r s = OptionAndPds ( txtcpState, txtcpOpPdFormat),
op! dLen = getLength8 (extras),
*T( 'Heren = (optPdLen + 20) /4 ;
ums gned char [ ] OptionAndPds (unsigned char [16] txtcpState, unsigned char [16]
tcpOpPdFormat) {
9} /¥'Codes for returning an array of bytes for the 32-bit integers for the options and padding.
he ) are as per the State and thus TCP header length parameters. */

g
b
3& ¥ Codes for returning TCP Header String. Remember that TCP protocol transmits
ategers with big endian. It means that the most significant byte should transmit first. * /

Ik Jote: Instead of using many arguments, a typedef could have been used for the
heafler data structure. However, this will consume more memory. */

) i ned char [ ] TCPHeader (unsigned short SourcePort, unsigned short DestnPort, unsigned char [16]

tdpState, unsigned char [16] txtcpOpPdFormat, unsigned char [ ] Str unsigned int SequenNum, unsigned
int JAckNum, unsigned char * TCPHdrLen, unsigned *TCPHdrFlags, unsigned short window, unsigned

shakt *TCPChecksuml16, unsigned short *UrgPtr, unsigned char [optPdLen] extras) {

|
|



Embedded S)*tems

int i; unsigned char [ ] TCPHStr; unsigned short lenflag; unsigned char optPdLen; i
unsigned short TCPChecksum16 = checksum16 (Str); unsigned short *urg; unsigned char [ ] extrﬂ ?
*urg = *TCPURGENT (unsigned char txtcpState, &TCPHdrFlags, *urgPtr) i
TCPHStr [0] = HByte (SourcePort); TCPHStr [1] = LByte (SourcePort); TCPHStr [2] = HByte (Desrzidrt);
TCPHStr [3] = LByte (DestnPort), TCPHStr [4] = ByteO (SequenNum); TCPHStr [5] = Bytel (Seque ulvn),
TCPHStr [6] = Byte2 (SequenNum); TCPHStr [7] = Byte3 (SequenNum); i
TCPHStr [8] = ByteO (AckNum); TCPHStr [9] = Bytel (AckNum); TCPHStr [10] = Byte2 (Acﬂjmvn);
TCPHStr [11] = Byte3 (AckNum); '
*lenflag = * TCPHdlenFlagBits (unsigned char [16] txzcpState, unsigned char [16] txtchdeF"'aﬁnat
&TCPHdrFlags, & TCPHdrLen);
TCPHStr [12] = HByte (lenflag); TCPHStr [13] = LByte (lenflag); 11
TCPHStr [14] = HByte (window); TCPHStr [15] = Byte3 (window); !
TCPHStr [16] = HByte (TCPChecksum16); TCPHStr [17] = LByte (TCPChecksumi6); !
TCPHStr [18] = *Urg++); TCPHStr [19] = *(unsigned char *) urg); E '
extras = OptionAndPds (unsigned char [16] txtcpState, unsigned char [16] txtcpOpPdFormat);
optPdLen = getlength8 ( extras); ;
*TCPHdrLen = (optPdLen + 20) /4; i
while (optPdLen > = ++i) {TCPHStr [i] = extras [i — 20];}; /* Fill the options and padding bytes. "‘7 i
unsigned short TCPSegLen = getlength16 (Str) + (optPdLen + 20); /* Add byte of header length als ;¥
return (TCPHStr);

) . 1
I* T *
/* Declarations and codes for the function, IPHeaderSelPkt for returning an IP header string Ehe

packet data in socketStream from OutStream. Str means the stream from transmission control lay
node, nodel, end to be sent with header as per IP protocol to the other end, node2, through the n
driver, switches, bridges and routers. */ : [;ie

b

11. /* First let us declare IPVerHdrLen for 4 bits (bit 7, bit 6, bit 5 and bit 4) for the version nus
Presently, IP version 4 is mostly used. So these bits are 0100. Another four bits (bit 3, bit 2, bit 1 and,
are the numbers of unsigned integers in the header. Header length includes 5 unsigned standard ing
and 0 to 10 integers for options and padding. The latter integers are used for controlling the path anq
through the routers. Some of these integers may also be used for adding network security. Options m
recordmg of the route of packet, time stamp on the packet source router IP address to be used b¢

the classic work of D. E. Comer and D. Stevens, Intemerworkmg with TCP/IP Vol 1, Principles, Pro
and Architecture from Prentice Hall, NJ, 1995. Usually, the options and padding are not present. Then
the four lower bits are 0101. */

unsigned char * IPVerHdrLen;

/* Header Length as per four upper bits in [PVerHdrLen. */
unsigned char *IPHdrLen;

12./* Let us assume that the options and padding are as per the format specified by a 16-characters 'mg,
txipOpPdFormat. It represents the number and meanings of optionally added integers and padded i mw;q [s.

*f

unsigned char [16] txipOpPdFormat;
13. /* Let a 16-character string txipState specify the protocol of the current IP segment and its xﬂ fn

3 ]




De%

b n for the controlled transmission. Protocol can be ICMP, IGMP, OSPF, EGP and BGP. Refer to this
authop’s book Internet and Web Technologies from Tata McGraw-Hill for definitions and any standard text
fefails of these protocols. */

hed char [16] txipState;

- Examples and Case Studies of Program Modeling and Programming with RTOS-1

14. /% Start of the codes for returning a short. It specifies 4-bit version field plus 4-bit IP Header length
ﬁel&' {* IPVerHdrLen followed by 3-bit specifying precedence of the IP packet on the network plus 5 bits
for the type of service. Let the latter 8 bits be at the address pointed by IPPrioServ. Precedence bits, ‘000’
meds i}sual precedence on the Internet. ‘111’ means highest precedence, the one needed for streaming the

3

and video on the net service bits for quality of service to be provided in terms of security, speed,
d or cost to be charged from the sender. The 16-bit integer returned by function, IPVerHdrPrioServBits
i?‘as per version and IP packet transmission state and transmitting IP options and padding format,
wxipStie and txipOpPdFormat, respectively. */

unsigred char * IPPrioServ;

unsfg d short IPVerHdrPrioServBits (unsigned char [16] txipState, unsigned char [16] txipOpPdFormat,
&IPPioServ, &IPHdrLen) {

15. Remmed integer bit 15, bit 14, bit 13, bit 12, bit 11, bit 10, bit 9 and bit 8 are as per 8 bits at
IPH{ n Three precedence bits, bit 7, bit 6 and bit 5 in the returned integer are as per the IP precedence
and !3 vice bits bit 4, bit 3, bit 2, bit 1 and bit 0 are as per QOS (quality of service specified in txipState. */

Bo;_)Le bit 15, bit 14, bit 13, bit 12, bit 11, bit 10, bit 9, bit 8, bit 7, bit 6, bit 5, bit 4, bit 3, bit 2, bit 1, bit 0;
/* They codes to find character at IPPrioServ from txipState. */

16. £* Lode to find IPHdrLen from txipOpPdFormat */

#; * End of the codes for returning the integer that specifies IP version, Header length, precedence

and $efvice. */

17. /! fwo 16-bit short integers for packet length and packet identification by receiver. */

unsigngd short IPPktLen; /* Specify the length of IP Packet */

unsigngd short UniquelD; /* Specify the UniquelD of the present IP Packet This is put by the router or the

transpytter, node1. It uniquely identification for the packet routed. This will help the receiver to reassemble

the ftagments of this IP Packet at node2 for upward transmission to transport and application layer there.

A fragment may be lost on the net in between routers due to some error popping in. This helps in

recovefing the lost fragment. */

iAlstream from OutStream may be bigger than 6536 bytes minus the header bytes in the IP packet.

Ther?f : i, it is to be fragmented. Fragmentation is also necessitated when the network driver and other
*between do not permit even an IP packet of 65536 bytes and need shorter frames. Function,

FragBits Codes is for returning 3 flag bits and 13 fragment-offset bits. The offset specifies fragment

Besides precedence and QOS, txipState specifies what 3 flag bits and 13 fragment-field bits

be defined by this function. */

d ‘ion for finding a stream of bytes actually been put with the packet. */
; tPktData (unsigned char [ ] Str, unsigned char OutStream, unsigned char [16] txipState, unsigned
txipOpPdFormat, unsigned char [ ] Str) {



560 Embedded Sy+ejms

N—-

. S
|5
unsigned short IPFlagFragBits (unsigned char [16] txipState, unsigned char [16] txipOdeF L
&IPHdrFlags, &IPHdrFrag), char [ ] OutStream) { R
Boolean bit 15, bit 14, bit 13, bit 12, bit 11, bit 10, bit 9, bit 8, bit 7, bit 6, bit 5, bit 4, bit 3, bit 2, bit L{bit 0;
19. /* Codes to have three bits, bit 15, bit 14 and bit 13 in the returned integer as per the flags. A ﬂag;,

mfb = 0 means that the receiver should wait as there are more fragments to follow this fragment. mib/=
for last fragment. It refers to the IP header size, which specifies the total number of unsigned integer;;‘ the
IP header. The total is 5 plus the unsigned integers for options and padding. These are as per txipStafe,
txipOpPdFormat used by IP segment that is transmitting. The bits, bit 11, bit 10, bit 9, bit 8 are reser ’
/* Bits, bit 12 down to bit 0 are as fragment offset bits and as per already transmitted bytes from n
driver task at nodel. */
/* Code to find character IPHdrFlags from bit 15, bit 14, and bit 13. The bits are as per txipState. | -

. 1
20. /* Code to find 16-bit short integer IPHdrFrag from bit 13 down to bit 0. These bits are as per j‘ Jtate
specification, OutStreamSize and the bits already transmitted by the network driver. [PHdrFrag =?g1§ans
OutStream byte numbering (8)' is being sent with this packet. */ ;

¥
¥

J; I* End of the codes for returning an integer that specifies IP Header flags and fragmentfoffset
bits. */ B

21. /* Declare other header field, 16-bit Checksum, 8-bit time to live and 8-bit, protocol filed, pource
nodel IP address and destination node 2 IP address. */

unsigned short *IPChecksum16; “,;
unsigned char *fimeToLive; /* Note: It decrements at each router on the way to node2. */ i
unsigned char *PrctlField; | Note: PrctiField = 17 for UDP, = 6 for TCP, = 1 for ICMP. i
unsigned short SourcelPAddr;
unsigned short DestnIPAddr; i

unsigned char [ ] extras; unsigned char OptPdLen; 4
IPextras = OptionAndPds (txipState, txipOpPdFormat), 5D
optPdLen = getLength8 (IPextras); (
*]PHdrLen = (optPdLen + 20) /4; 3
unsigned char [ ] IPOptionAndPds (unsigned char [16] txipState, unsigned char [16] i .
txipOpPdFormat) { 1.

22. /* Codes for returning an array of bytes for the 32-bit integers for the options and padding. Tip& are
as per the State and thus IP header length parameters.

it

5 i
23. /* Codes for returning IP Header String. Remember that IP protocol transmits the integers R
endian. */
/* Note: Instead of using many arguments, a typedef could have been used for the header data
However, this will consume more memory. */




or§iPverHdrPrioSer, unsigned short *IPPktLen, char * IPVeerrLen, unsigned char * IPHdrltn, unsigned

,,JPHdrFlags, unsigned short *IPHdrFrag, unsigned short */PChecksum 16, unsigned short UniqueID,

ji " ed char *timeToLive, unsigned char *PrctiField, unsigned char [ ] Str, unsigned char OutStream, -
% thLen] IPextras, unsxgned char [16] mpStaze, unsngned char [16] txepOdeFomtat) {

s [0] = HByte (new);
H$& [1] = LByte (new);
25: /¥.Codes for estimating assigning UniquelD to the packet. * /

IPHSKr [4] = HByte (UniqueID);
IPHS# [5] = LByte (UniqueID);
26. /¥ Codes for assigning Time to live and Protocol field from txipState. */

W (8] = *timeToLive; IPHStr [9] = *PrctiField;

S [12] = byte0 (SourceAddr); IPHStr [13] = bytel (SourceAddr);

Sir [14] = byte2 (SourceAddr); IPHStr [15] = byte3 (SourceAddr);

St [16] = byte0 (DestnAddr); IPHStr [17] = = bytel (DestnAddr);

9% [18] = = byteO (DestnAddr); IPHStr {19] = = byte0 (DestnAddr);

us = [POptionAndPds. (txipState, txipOpPdFormat); /* Find Options and Padding. */
opPglen = getLength8 (IPextras);

*IRHgrLen = (optPdLen + 20) /4;

- gopthLen > = ++i) {IPHStr [i] = [Pextras [i - 20] }; 7* Fill the options and padding bytes.

gCodes for selecting the socket stream data to be sent and then estimating IPPktLen /
PktData (Str, OutStream, xipState, txipOpPdFormat, [Pextras);

iged short *IPPktLen = getLength16 (Str) + (optPdLen + 20); /* Add byte of header
Ethialso. */

IPHS¥r [2] = HByte (IPPktLen); IPHStr [3] = LByte (IPPktLen)

new # IPFlagFragBits (txipState, txipOpPdFormat, &IPHdrFlags, &IPHdrFrag, Str)

IPHSkr [6] = HByte (new); IPHStr [7] = LByte (new);

ungigned short /PChecksuml6 = checksum16 (IPHStr); /* Find checksum of IP header part only. */
IPHSgs [10] = HByte (IPChecksuml16); IPHStr [11] = LByte (IPChecksuml16);

rety 3(IPHStr),

P */
/* Peglarations and codes for the function, NetHdrFrTr for returning a Frame header string, frameHeader
and ¢ fragment data in frame [ ] array from SocketStream. Str means the stream from internet layer ata

\‘fwdel end to be sent with header as per data link protocol and card protocol to other end, node2,
h the pipe having byte streams from the network driver. */



: Embedded Syss

void NetHdrFrTr (unsigned char [ ] frame, unsigned char [ } frameHeader, unsigned char [ ] traill
unsigned short fragOffset, unsigned char [ ] fragment, unsigned char [ ] trailBytes, unsigned short *FRI&
unsigned short * HdrLen, unsigned short * endLen, unsigned short *FrameHdrFlags, unsigned %
“*FrameHdrFragOffset unsigned short *FrameCRC32, unsigned short *PrctlField, unsigned char [4 %;
unsigned char [ ] SocketStream, unsigned char { ] FRextras, unsigned char [16] txFRState, unsxgned C
[16 ] txFROpPdFormat, unsigned char [12] netDrvType) { B
unsigned char [ ] frame, frameHeader, trailBytes, fragment, trailBytes; unsigned short fragOffset;
unsigned short *FRlength, * HdrLen, * endLen, *FrameHdrFlags, *FrameHdrFragOﬁfset
*FrameCRC32; ¢
unsigned int CRC32 (unsigned int crc, unsigned char aByte); o i
/* Codes as per netDrvType, transmitting frame state ixFRState, transmitting frame option g
and padding format, txFROpPdFormat create an array of characters for the frameHeader,
for the fragment and for trailBytes. Each is of length, HdrLen, fraglen, endLen, FRlength. 1
Other fields calculated are short integer for fragOffset and unsigned integer for frame i
CRC bits, FRCRC32, etc. */ o

)

/******************************- <ot ook ok sk ok sl e skl sk sk sk ek e sk e ske okl sk sk sk ke sk ok sk ok

%‘ Summary - YV';;" Y

The following is a summary of what we learnt in this chapter. } TJ:
P/

Three case studies were explained. These are for automatic chocolate-vending machine, digital camera, and
IP stack systems. |

Software engineering approach is first studying the requirements, then specifications, and finally the UML mod bling.
Drawing hardware architecture and software architecture simplifies design implementation. :
Use of MUCOS and VxWorks RTOSes and use of the IPCs for task synchronization and concurrent pro --.‘
ACVM system is modeled by three class diagrams of abstract classes ACVM _Devices, ACVM_Output P
and ACVM_Tasks. \
MUCOS RTOS functions have been used in an embedded system for an automatic chocolate vendmg

(a) System user coins are of three denommatlons, Rs 1,2 and S (b) Collection of coins at a chest (c) Refy
case of short change (d) Excess refund from a channel in case excess amount inserted into the machine (e) Deﬁ cfi
the chocolate through a port (f) Displaying messages as per the machine status (g) Displaying time and ¢4 e
It shows how the semaphore as the MUCOS can be used as event flag. It also shows how to use the M
mailboxes and the system RTC. :
Camera tasks are modeled by four class diagrams are divided Picture_FileCreation, Picture Fllel)j ay,
Picture_FileTransfer and Controller_tasks. We learnt that besides microcontroller and the severah S
are required for performance. A microcontroller executes the Controller_Tasks. The controller tasks are the fo i ;
(i) Task_LightLevel control (ii) Task_flash (ii) initialization of tasks, (iii) shooting task, (iv) 1‘ i
Picture_FileCreation tasks, which execute on a single purpose CCD processor (CCDP) for t i- dark
current corrections, DCT compression, Huffman encoding, DCT decompression, Huffman decoding and " 4



! xamples and Case Studies of Program Modeling and Programming with RTOS-1 563

agd compressed ﬁle image display after the required file bytestream processing for shift or rotate or stretching or
g of contrast or color and resolution, (v) initiates memory stick save on notification from Picture_FileTransfer
# system object using a single purpose transfer processor (MemP), (vi) initiates printing on a notification from
e_FileTransfer using a single purpose print processor (PrintP), and (v) ) initiates:USB port controller-on
tification from Picture_FileTransfer using a single purpose USB processor (USB_P).

TP stack generation is modeled by class Task_TCP, which is an abstract class from which the extended class
- f' is derived to create TCP or UDP packet to a socket. The task objects are instances of the classes

‘f é king the insertion of application strings by the application. (b) A task for creating the application stream
o ‘the transmission control layer (c) Two task codes are given for inserting the header fields using either

s the reader a thorough understanding of the application and the various functions of the system RTC in' VxWorks
10S. The reader must be able to develop solutions for an embedded networking system using the VxWorks.

Keywords and their Definitions

1 ; ion Layer : A layer consisting of fields attached before placing the message on the network
i so that the application at the other end understands the request and service:

: A sum representing the number of carries generated by adding the 8-bit numbers
or 16-bit numbers or 32-bit numbers.

: Charge couple device consisting of a large number of horizontal and vertical
cells. Red, green and blue (RGB) cells generate three outputs for a pixel.

C@_D#C : A processing unit for encoding and decoding the bytes or bytestreams, for
b example, JPEG CODEC for encoding and decoding the bytes or bytestreams
o from a CCD preprocessor. A

Compression : To convert the bytes in a file by suitable encoding into a reduced number so that
b they can be retrieved back by a reverse process of suitable encoding for

decompression.

CIQC nyclw Redundancy Check) : A 32-bit or 16-bit integer calculated so that if there is an error in the transmission,
then it can be detected by comparing the CRC of the received message. It takes
i b a longer time to calculate but it is better than the checksum. -

Cannéction-Oriented protocol  : A protocol in which inter-network communication first takes place for connection
: establishment, then the message flows under a flow control mechanism and
then the connection termination occurs after suitable inter-network
communication. Transmission Control Protocol, TCP, is an example.




Cmic Sofiware

DES3

Wlayer

IP header
IP packet

LCD dot Matrix

Network Driver

Packet
Pixel

RGB

SLIP
TCP Header
TCP/IP stack

TCP Segment

Transmission Control Layer
ubrP

UDP Header

: A protocol in which inter-network communication takes place withggt |
mode,ttﬁspmtocolisobserved.UserDatagmumtoooLUDRisiise <‘;

: Astxeamofbytesthatlsmdependentofmeprewoussmm The UDP "‘

: “Data Encryption Standard.

: A version of DES.

: A device to operate a mechanical system using electronic signals. 1
: A key embeded in ROM at the time of card fabrication so that the caryjg

attached before placing the message on the network through routers so}

: Bytes as per IP protocol placed over the bytes of a packet of TCP segmen k :
: AnIP protocol based packet of size upto 2'® bytes that transmits after packe

: A card that sends and receives the messages physically from the ne! b

- A set of bytes which includes apphcatmn, transport and internet layerx a

: Smallest unit of an image, the area of which depends inversely on

“colouted image there are three cells (RGB). i
"+ red, green and blue colors. Any colour in the visible range is a combination#

X uTon
: A Serial Line Interface Protocol. Wl

: - A header placed at the transmission control layer as per TCP protocol. %‘ f
: A stack of the bytes that transmit from network drive after placing apptppriate

: Alayer for placing TCP header fields or UDP header fields on a TCP/IP lzrrk.
:-A protocol at the transmission control layer for sending a TCP/IP

¢ A header consisting of four fields, source and destination port addresses ﬁ for
' {

connection establishment and without a flow control mechanism and withéu
connection termination by inter-network communication. Usually, in bigad

has a maximum size of 2!6 bytes.

unique xdentlty

routers send the message as per the source and destination IP address fi$id
the layer. The fields at this layer are for network-flow controlling me
For example, IP header fields in TCP/IP.

of TCP segment stream-data and after placing IP header bytes.
suitable controller shows the characters or pictures at the matrix.
facilitates the physical connection for the stream of bytes between the i
layers. A driver may use SLIP or PPP protocol for driving on the net aftefj#iati
the header and trailing bytes as per Ethernet of another protocol. Each def¥ef
a unique?

that routes through a set of routers along a path presently available --‘»:
destination. ]

resolution. An image consists of horizontal and vertical pixels. At each i

three colors. There can be 256 or 2'6 colours. It depends on the colour res:

TCP/TP suite protocol headers and option bytes over that.

: A segment of the bytes along with the headers of TCP and apphcanﬁ ihyer

protocols that transmits in a single instance through lower layers. i

ork

datagram.

length and checksum.




amples and Case Studies of Program Modeling and Programming with RTOS-1

4’ @l Review Questions

.. Why must a designer first understand the system requirements before designing the codes? Why are the list of tasks
#nd synchronization models required before using RTOS functions.
.| The while loop of the first task contains only task suspend functions. Explain why it should be so?
. Bxplain how the task for reading ports synchronizes with the port device driver.
ow do you use MboxAmount in Example 11.1.
at is the role of Task_Display? How do you code for the multiple line messages at an LCD matrix? (MUCOS)
. Explain use of semFlags in the ACVM tasks in Example 11.1. MUCOS)
Ve can use the number of mailbox IPC messages from a task. Explain how this has been effectively used. Why is
message queue not used in place of multiple mailboxes? (MUCOS)
plain the role of each semaphore used. How will the semaphore be used and consequently the codes in Example 11.1
e modified in the following modification to the system? ACVM using a random number generator C function
Helivers one chocolate free out of an average of eight coin insertions and refunds all the coins to the lucky ones.

10, Why are the DCTs and inverse DCTs done in a digital camera? Why is fixed point arithmetic used instead of
oating point arithmetic in digital camera?

escribe classes, the objects of which are used in writing codes for saving an image file in a digital camera.

ow does the range of priority assignments differ from MUCOS assignments in VxWorks?

plain how the semaphore is used in Example 11.2 to direct the use of UDP in place of TCP at the transport layer.

13. [Explain how the task for reading ports synchronizes with the port device driver.

16. [Draw the class diagram of Controller_Tasks for a digital camera.

11. Explain the use of the statement: ‘fd = open (netDrvConfig.txt, O_RDWR, 0);’. (VxWorks)
18. | Draw the state diagram of ACVM functions.

1? Draw the state diagram of digital camera functions.

2. | Draw the state diagram of TCP stack generation.




B IO ST L T

Studies of Program
Modeling and
Programming with RTOS-2

In the previous chapter, ACVM was an interesting
example designed to teach embedded system design
concepts and RTOS applications. We have seen three
case studies in that chapter. These were for ACVM,

digital-camera and-FCP stack systems.-We- learnt-that- - -
first we study the requirements, get clarity of the -

required purpose, inputs, signals, events, notifications,
outputs, functions of the system, design metrics, and
test and validation conditions, specifications, in terms
of users, objects, sequences, activity, state and class
diagrams for abstracting the component, behaviour and
events and create a description in terms of signals, states
and state machine transitions for each task that help
us greatly in defining the system architecture for
hardware and software. The coding for implementation
is done as per the architecture. The system is then finally
tested.




T S SN S

o T e A e

Like in the previous chapter, we will first start with an interesting example of robot
orchestra. We will learn aspects of embedded system design from the four new case
studies described in this chapter.

1. Inter-robot communication in a robot orchestra.

2. Embedded systems required in an automobile. Understand design of control
system and code implementation using the example of an automotive cruise
control (ACC) system in a car. Also learn how the code design can be done
using VxWorks after emulating OSEK (Section 10.2) features.

3. Learn card-host communication tasks and smart card OS features. Also learn
system design and code implementation for communication of smart card
with the host machine (for example, bank ATM machine or payment machine
when using a credit card at a shopping mall).

4. Learn interrupts, tasks, and state machine concepts by example of SMS create
application in a mobile phone.

“12.1" CASE STUDY OF COMMUNICATION BETWEEN
ORCHESTRA ROBOTS

Qrio was an invention of Sony. Times magazine described it in 2003. Qrio means
Quest for cuRIOsity. Qrio was a smoother and faster humanoid robot than ever
designed before. Qrio weighed 7.3 kg and was 58 c¢m, and had a one-hour battery.
Four Qrios performed a complicated dance routine in 2003.

Qrio was a bipedal robot which could wave hello and recognize voice, its two
CCD cameras in the eyes recognized up to 10 different faces and objects, and
determined the location of objects in view. Three CCD cameras were used in all, one
in each eye and one at the centre. Qrio could converse, sing, walk uphill, dance, kick
and play using its fingers. Qrio had seven microphones. Qrios could sing in unison
and interact with humans with movements and speech with more than 1000 words. It
could learn new words also. Emotions were shown by flashing lights.

In 2006, ten Qrios of the fourth generation performed a dance number. They also
conducted an entire orchestra. They gave a unique rendition of Beethoven’s
5" symphony (1808), one of the most well known and popular compositions of western
classical music, which is often played in the orchestra using several
musical instruments and conducted by a conductor. [http://en.wikipedia.org/wiki/
Symphony_No._5_(Beethoven)]. The Qrio robot orchestra had novel instruments
played by robotic actuators.

Each Qrio had 38 fluid motion flexible joints controlled by separate motors
for each with an ASIP in each. Three central system microcontrollers controlled
motion, recognized speech and visual images, respectively. Memory was 64 MB
with each microcontroller.



‘ : ’ : Embedded *?ms

Qrio embedded complex algorithms for complex mechanical manoeuvres for balancing during da;cing or
in the orchestra. Qrios embedded complex orchestral and/or choreographic programs.
Figure 12.1 shows a robot orchestra.

Fig. 12.1 Robot-orchestra

Commands and messages communicated in each Qrio between the microcontrollers, sensors and agtuators.
A robot was programmed using an Orchestrator.

Assume that there are k sensor inputs to the module and g outputs generate to actuators and p ofitputs to
message boxes (also called mailboxes in certain OSes or notifications in certain OSes) in a s¢quence.
Orchestrator is software which sequences, synchronizes the inputs from the 1% to the k™ sensor and generates
messages and outputs for the actuators, display and message boxes at the specified instances and time intervals.
Message boxes store the notifications, which initiate the tasks as per the notifications.

Figure 12.2(a) shows embedded software module Orchestrator-1 at a microcontroller 1. Figurg 12.2(b)
shows commands and messages communication between Orchestrator-x, Orchestrator-y and Orchéstrator-z
software modules at same or different microcontrollers.

A musical device communicates data to another using a protocol called MIDI (Musical Instrumert Digital
Interface). Reader is advised to study a tutorial on MIDI. Popular websites are http://www.borg.com/~jglatt/
tutr/miditutr.htm and http://www.xtec.es/rtee/eng/tutorial/midi.htm for this purpose.

Most musical instruments are MIDI compatible and have MIDI IN and MIDI OUT con ections,
which are optically isolated with the musical-instrument hardware. Three MIDI specifications defing (i) what
a physical connector is, (ii) what message format is used by connecting devices, controlling them in yeal time
and standard for MIDI (musical instruments digital interface) files. Each message consists of a co and and
corresponding data for that command. Data are sent in byte formats and are always between 0 and 127 and
corresponding command bytes in a channel message are from 128 to 255.

A channel (command) message 128-255 (between 0x80 to 0xEF) in MIDI file has musical
bend, control change, program change and after-touch (poly-pressure) messages. There are a m
16 channels in a system. MIDI specifies system messages, manufacturer’s system exclusive mesgages and
real time system exclusive messages (between OxFO to OxFF). A real time system message example is as
follows: A MIDI Start from conductor is 0XFA command and always begins playback at the very Beginning
of the song (called MIDI Beat 0)]. So when a slave player receives a MIDI Start (OxFA), it automatically
resets its song position = 0.




Dew Examples and Case Studies of Program Modeling and Programming with RTOS-2 569

1
Message box }<—
: : 1

5
essa05 1 oronestrator | o

' running at

[ Actusor |~ @ mlerocontrller |

(a) Actuator }<—q

Orchestrator-
X Message box

Orchestrator-
Y

- Z

Fig. 12.2 (a) Embedded software module of Orchestrator-1 at a microcontroller 1 with k sensor
inputs, g outputs to actuators and p outputs to message boxes {(b) Commands and
messages communication between Orchestrator-x, Orchestrator-y and Orchestrator-z
software modules at same or different microcontrollers

MIDI messages define an event as what musical note is pressed and with what speed it was pressed. This
event ig input to another MIDI receiver. MIDI receiver plays that note back with the specified speed. Therefore,
an entjre ensemble of a robot-orchestra can be controlled using MIDI protocol. Also the actuators are
synchrpnized as per the notes and speeds.

Tramsport of a MIDI file can be over Bluetooth, high Speed Serial, USB or FireWire. For the robot orchestra,
commm&;cation protocol for MIDI files can be Bluetooth or WLAN 802.11.

Figure 12.3 shows communication between the robot conductor C and four slave-robots (players P! to P4)
in the fobot-orchestra. Each slave robot plays distinct musical instruments and thus plays the notes from
distinct track (channel) of MIDI file from the master (conductor).

Robot Player
of Musical P1
P2 Instrument 1
Robot Player c
of Musical
Instrument 2
P3 Conductor
Robot Player
of Musical
Instrument 3 /
Player
of Musical P4
Instrument 4

Fig. 12.3 Communication model of a robot- orchestra




570

12.1.1 Requirements

Embedded s*agms

Requirements of the communicating robots can be understood through a requirement table gjven in

Table 12.1.

Table 12.1 Requirements of Communication system for MIDI files in Robot orcTestra

Signals, Events
and Notifications

Outputs

Functions of
the system

Design metrics

Test and
validation conditions

Requirement Description |
Purpose To communicate selected MIDI file’s data over Bluetooth personal-area-network from{Robot
Conductor communication task to music playing robots A
Inputs 1. Orchestra_Choice for selected MIDI file

A user signals an Orchestra_Choice, say Beethoven’s 5% symphony to start. The c

2. MIDI File

1. Commands (channel-messages) in the file’s data

1 MIDI File over the communication network :
2. Messages to actuators for movements as per specific track messages and data - §

message queue for task_Piconet_Master. Piconet is a network of Bluetooth devices. Bl
devices can form a network known as piconet with the devices within a distance of about
10 m. Bluetooth piconet consists of network of C, P1, P2, P3 and P4. task_PICONET_§ weP1,
task_PICONET_SlaveP2, task_PICONET_SlaveP3 and task_PICONET_S aveP4
accept the messages from task_Piconet_Master. A task_Piconet_Slave posts the MIDI tesdages
to a task_ MIDI_Slave. task_ MIDI_Slave posts the messages to a task_Orchestratof{ whi
controls the motor movements of the slave robot motor actuators and musical-note acl

1. Power Dissipation: As required by mechanical units, music units and actuators
2. Performance: Near human equivalent of Orchestra play

3. Engineering Cost: US$ 150000 (assumed) including mechanical actuators

4. Manufacturing Cost. US$ 50000 (assumed) ;
1. All MIDI tommands must enable all orchestral functions correctly BB

fr

4
"
¥

12.1.2 Class Diagram and Classes

A class diagram [Table 6.3] can be modeled by a class diagram of Task_Conductor. Figure 12.4 shows class
diagrams of Task_Conductor and other classes, which are used for posting a MIDI file messages over the

piconet to the slaves.

1. Task_Conductor interfaces ISR_ Orchestra_Choice and extends to Task_MIDI. Task_ Conductor

extends to Task_Piconet_Master.

2. Task_SlaveP1, Task_SlaveP2, Task_SlaveP3, and Task_SlaveP4 are abstract classes and extend to
classes Task_Piconet_SlaveP1, Task_ Piconet _SlaveP2, Task_ Piconet _SlaveP3 and Task_|Piconet

_SlaveP4, respectively.

3. Task_MIDI_SlaveP1, Task_MIDI_SlaveP2, Task_MIDI_SlaveP3 and Task_MIDI_SlaveP4 ar¢ classes

in slaves P1, P2, P3 and P4, respectively.




De%% Examples and Case Studies of Program Modeling and Programming with RTOS-2

4.

Task_Orchestrator_SlaveP1, Task_ Orchestrator _SlaveP2, Task_ Orchestrator_SlaveP3 and Task_
Orchestrator _SlaveP4 are classes in slaves P1, P2, P3 and P4, respectively.

ISR_ Orchestra_Choice—l

task_MIDI

J Task_Conductor
|

l task_Piconet_Master

|

Task_SlaveP1 Task_SlaveP2 —l

task_ MIDI _SlaveP1

L

lL task_Piconet_SlaveP1 '—!

task_Orchestratror_SlaveP1

! L task_Piconet_SlaveP2 }—

[ task_MIDI_SIavePZJ[

task_Orchestratror_SlaveP2 1——1

LTask_SIavePS ] ] Task_SlaveP4

task_Piconet_SlaveP3

L task_ MIDI _SIavePaj

L task_Orchestratror_SlaveP3

Ia

l task_Piconet_SlaveP4 }—ﬁ

| task_ MIDI _SlaveP4

1
|

task_Orchestratror_SlaveP4

L

L
|

Fig. 12
to the slaves

Class | A class is a logical group

.4 Task_Conductor class diagram of for posting a MIDI file data over the Bluetooth piconet

Task_MIDI

and has fields (attributes) and
methol (operations). Figure 12.5
shows gn example of fields in class
Task_MIDI. The class consists of
fileTypa field. It specifies the type
of file. [t defines Type 0 file if the

typeO: fileType;

MsgMusical Note, MsgPitchBend, MsgControlChange,

Msg AfterTouch, MsgSystem, MsgManufExcl, MsgProgramChange:
MsgRealTime: String

NumMsg: unsigned int;

file contains only one track, which
has allj of the MIDI messages,
which means the entire orchestra

OSMsgQAccept ( );
OSMsgQPend ( );
OSMsgQPost ( );

performance for that one track. A

amChange, MasgAfterTouch,
objects|for musical note, pitch-bend,

Fig. 12.5 Class MIDI

MsgSystem, MsgManufExcIMsg and MsgRealTime. These are string
control change, program change, after-touch, system messages,



572 Embedded Syspams

starting with first character in capital case. For example, the task_MIDI, task_Piconet_
task_Piconet_SlaveP1, task_ Piconet _SlaveP2, task_ Piconet _SlaveP3 , task_Piconet_SI

Task_Orchestrator_SlaveP2, Task_Orchestrator_SlaveP3 and Task_ Orchestrator_SlaveP4.
Message queue objects MsgQMidi, MsgQBluetooth, MsgQMidiP1, MsgQBluetoothP2, MsgQ
MsgQBluetoothP3, MsgQMidiP3, MsgQBluetoothP4, MsgQMidiP4, SigPortl, SigPort2, SigPort3 and
SigPort4 are used for posting and accepting messages. MsgQMidi posts NumMsg messages from MIDI file
in one cycle to the object task_Piconet_Master. MsgQBluetooth posts Bluetooth stack data in one cle to
Port_Bluetooth. Signal objects SigPorts to ports initiates transfer of Bluetooth stack. Signal object SigPortP1,
SigPortP2, SigPortP3 and SigPortP4 initiates reception of Bluetooth stack.

12.1.3 State Diagram

Figure 12.6 shows a state diagram for objects from classes of Task_Conductor. A state diagram shows a
model of a structure for its start, end, in-between associations through the transitions and shows events-labels
(or condition) with associated transitions. A dark rectangular mark within a circle shows the end. [Table 6.3]
The state transitions takes place between the tasks, task_MIDI, task_Piconet_Master, task_Piconet_S]aveP1,
task_ Piconet _SlaveP2, task_ Piconet _SlaveP3 , task_ Piconet _SlaveP4, task_MIDI_SlaveP1] task_
MIDI_SlaveP2, task_ MIDI_SlaveP3 and task_ MIDI_SlaveP4, task_Orchestrator_SlavePl1,
task_Orchestrator_SlaveP2, task_ Orchestrator_SlaveP3 and task_ Orchestrator _SlaveP4.

12.1.4 Robot Orchestra MIDI Communication Hardware and Software
Architecture

ports, devices and mechanical and electromechanical units. It also specifies interfacing and mapping of these
components. Figure 12.7 shows a block diagram of communication hardware architecture. Following| afe the
specifications:

Hardware architecture specifies the appropriate decomposition of hardware into processors, ASIPs, \}emory,

1. A microcontroller at master and each slave to control Orchestrator for movements. An ASIP for each
motor movement. ;
2. An ASIP at master and each slave for Bluetooth piconet communication between master andslaves.

Software Architecture Software architecture specifies the appropriate decomposition of softwpre into
modules, components, appropriate protection strategies, and mapping of software. Software consists of the
following at master and each slave.




Examples and Case Studies of Program Modeling and Programming with RTOS-2 573

ISR_ Orchestra_Choice I

m] !

Y
) F"_"{ IDI
' tasu;w _______________ l - NumMsg; MsgQMidi
[ task_Piconet;Master ‘

... Bluetooth stack

;| task_Piconet_SlaveP4

True
True

Track P1

Track P4
Message

Message
task_MID!_SlaveP1 task_MIDI_SlaveP4
} ...... S— NumMsg - l_ ....................... NumMsg
task_Orchestrator_SlaveP1 task_Orchestrator_SlaveP4
2 Y
y MOREMDI
- messages @

Fig. 12.6 State diagram for task_MIDI

ASIPateach m —— — — — — |~ — Power
Motor joint | Supply
—_ 1 Biuetooth
Microcontrolier communication

ASIP
RAM Includes 8 MB ROM,
64 kB Flash memory, timer,

SI, 8 hardware-interrupts,

Fig. 12.7 Block diagram of communication-system Microcontroller and ASIPs at master and
each slave

14 OS
2] ISRs for initiating action on user inputs and GUI notifications, for example for Orchestra_Choice.

3] The tasks are the objects of the classes shown in Figure 12.4.

4} Orchestrator tasks for master and slaves.
5] OSMsgQAccept, OSMsgQPost and OSMsgPend are the message queue methods (functions) for system
call to the OS. Three methods synchronize the tasks and their concurrent processing such that first




| - ~ Embedded Syppet

task_MIDI waits for message for Orchestra_Choice from the ISR_Orchestra_Choice, then the
task_MIDI posts the bytes in message queue for task_Piconet_Master.
. task_MIDI waits for NumMsg MIDI messages from MIDI file for chosen orchestra and posts the
NumMsg MsgQMidi messages to task_Piconet_Master.
. task_Piconet_Master discovers the slaves and sets up piconet Bluetooth device netwqrk on
first initiation. On accepting MsgQMidi messages, it sends protocol stack outputs through the
communication port.
. A task_Piconet_Slave receives Bluetooth stack for the NumMsg messages of MIDI file and dets up
network with master as server. The MIDI messages are sorted for the messages to be directed to
or P2 or P3 or P4. For example, trackP1 messages post to task_MIDI_SlaveP1 from task_Piconet_SlaveP1.
Then task_MIDI_SlaveP1 posts the messages to actuators and Orchestrator task_OrchetratorP1.

9. Steps similar to Step 8 above repeat for all slaves tracks in robot-orchestra.

12.1.5 Communication Tasks Synchronization Model

Figure 12.6 showed state diagram of synchronizing cycle of different tasks. The communication system has a

cycle of actions in a task synchronizing model.
1. A cycle starts from task_MIDI, which receives the events (Orchestra_Choice). It posts MIDI m

sages

into message queue MsgQMidi. The MIDI messages are in the MIDI file of Orchestra_Choice stored
at master.

. A task task_Piconet_Master is for discovering the piconet slaves, establishing Bluetooth communijcation
with the slaves P1, P2, P3 and P4 and then accepting MIDI messages from the MsgQMidi.

task_Piconet_Master posts Bluetooth stack into message queue MsgQBluetooth and then signals
to Port_Bluetooth.
3. task_Piconet_SlaveP1 executes on a signal SigPortP1 from Bluetooth port Port_BluetoothP1

slave. Similarly, actions are at Port_BlueoothP2, Port_BluetoothP3 and PortBluetoothP4, whichEignal

three signals SigPortP2, SIgPortP3 and SigPortP4 to the task_Piconet_SlaveP2, task_Piconet_S
and task_Piconet_SlaveP4 respectively.

igPort
at the

veP3

4. task_Piconet_SlaveP1, task_Piconet_SlaveP2, task_Piconet_SlaveP3 and task_Piconet_SlaveP4 (:,)Jaccept

Bluetooth stack of the master, (ii) select the track messages for the four tracks of four slaves, and
four message queues the four messages in MIDI format task_MIDI _SlaveP1, task_ MIDI _SI
task_ MIDI _SlaveP3 and task_ MIDI _SlaveP4 for track P1, P2, P3 and P4, respectively.

st into
hveP2,

5. task_MIDI _SlaveP1, task_ MIDI _SlaveP2, task_ MIDI _SlaveP3 and task_ MIDI _SlaveP4 post to

track P1, P2, P3 and P4 Orchestrators the MIDI messages. Orchestrators direct the messages|to the
actuators of the music track and robot movements.
Figure 12.8 shows a synchronization model for master—slave robots communication tasks using message
queues and signals. (Tasks waiting for IPCs 6b, 6¢, 6d, 5b, 5c and 5d are not shown in the figure.)
-
12.2 EMBEDDED SYSTEMS IN AUTOMOBILE
Present-day automobiles have many embedded systems. Figure 12.9 shows the type of systems in a cat. Each
system has at least one microprocessor or microcontroller and software. A car may contain the following nine

types of systems embedded in it.
1. Engine control: Engine control system is by automatic control of fuel injection.

2. Speed control and brake: Speed Control and brake systems are automatic cruise control (ACC),

antilock braking, automatic braking and regenerative braking.




i Exampiles and Case Studies of Program Modeling and Programming with RTOS-2 575

: 1: Events 2: MsgQMidi 4: SigPort
ORCHESTRA CHOICE = —0r 1 ek Proonel_Masier ] [ Port_Blustoot l
/ 8: MoreData 3:MsgQBluetooth
- task_MIDL_ :
| sk OrchestratorPt [ —|  siavePt [~ task_Piconet SlaveP1 || Port BlustoothP1 [
7a:MsgQMidiPt ~ 6a: MsgQBiuetoothPt Sa: SigPortP1
-------------------------------------------------------------------------- Port_BluetoothP2 [—
7b: MsgQMidiP2 6b: MsgQBluetoothP2 5a: SigPortP2
-------------------------------------------------------------------------- Port_BluetoothP3 |
7¢: MsgQMidiP3 6c: MngBIuetoothPS 5c: SigPortP3
- Port_BluetoothP4 |
——-'gftask__OrdvestratorN e nati
7d: MsgQMIdiP4——  6d: MsgQBluetoothP4 5d: SigPortP4

Fig. 12.8 Synchronization model for master-slave robots communication tasks

I Embedded System Applications I
[ 1 [2 3 [ 4 B
& Engine Speed Personal and Seat and ACHVWLT
. - Control Control and car safety pedal - -controllers
Systems brake Systems systems controls
A H 1 I -
RKE SRC MHSAPM
Ai :
hF aumeilc n ACC rbag | tmmobilizer unit |
| | fControl Vicinity Alert Route and traffic monitors 6
Anti-tock braking, automatic braking, Automobile Status monitoring and
CMB, regenerative brake systems , datalogging 7
Voice activation and commands 8
Infotainment systems and text-to- 9
speech converter i

Fig. 12.9 Type of applications of the embedded systems in the car

3. |Safety systems: Safety systems are for the personal safety and car safety. Personal safety is provided
by multiple and variable speed airbags. Airbags are used for cushioning, in particular for automatic
rapid inflation of the bag in the case of a collision followed by deflation. Car safety is provided by
RKE (remote key entry) and immobilizer unit. RKE system has embedded CPU and software to control
door locks. An immobilizer unit immobilizes the car if an unauthorized user attempts to drive the car
away. Security systems include alarms, vicinity alert and lane departure alert. A CMB (collission
mitigation brake) system is also deployed for safety.




576 | . | _ Embedded Sy

The following functions are the discrete components which are later integrated to a central serving §
L.
2.
3.

4.

e

windows, light and temperature.
Route and traffic monitors: Route and traffic controls and monitoring are done by GPS (global
posmonmg system) mappmg, GPS guided route programmmg and route planners. :

vision assistance.
System interfaces for commands, voice activation, and interfacing: System interfaces are s
grammable buttons, voice commands, Bluetooth interfacing for handsfree telephony and wireless

RTC and watchdog timers for the tasks. [Refer to Sections 1.3.4 and Section 3.7]
Real-time control for all electronic, electromechanical and mechanical systems.
Adaptive Cruise Control (ACC) to maintain constant speed in cruise mode and to decelerate when a
vehicle comes in front at a distance less than safe and to accelerate again to cruise mode in adaptiveimode.
Data Acquisition System (DAS) for the following:
(a) Current time and date display, updating, recoding of instances of malfunction and time infervals
of normal functioning. Updating can also be by periodically synchronizing time with time $ignals
from GPS system
(b) External temperature
(c) Internal temperature
(d) Total distance covered for odometer and for ACC
(e) Road speed of vehicle in kmv/hr for the ACC, speedometer and speed warning
() Engine speed in r.p.m. [revolution per minute]
(g) Coolant temperature, instances of its excess above 115°C and constancy within 80 to 909C
(h) Illumination levels at display panels and inside the vehicle
(i) Fuel level (Empty, R1, R2, R3, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8 or Full)
(j) Oil pressure for starting oil pressure warning system activation for engine speed above 5000 r.p.m.
and alarm system activation above 15000 r.p.m.
(k) Presently engaged gear information
(1) Front-end car distance
Front panel Switches and display controls
Port for alarm signals. These are sent to display panel, beep and buzzer-sound systems. A wamning is
issued by displaying pictograms and raising sound-alarms and their appropriate records is stzzed for
diagnostic analysis. [A pictogram is a pre-recorded picture in an image data file. It displays onan LCD
matrix. Pictogram displayed is as per the required message]

. Diagnostics computations for driving time malfunctions statistics and analysis results for fapt fault

diagnosis by mechanic

Multi Media Interfaces

Control Area Network Interfaces

Serial Communication Interface (SCI), transmitter and receiver.




DeF Examples and Case Studies of Program Modeling and Programming with RTOS-2 577

Hatdware of embedded systems of a car can be designed using ASICs and microcontrollers and DSPs, for

The ch
of RT¢
uses a

le, 80x51, 68HC11/12, PIC, C167, ADSP2106x, 68HCOx, MCORE, Star12, TMS470, Hitachi H8S2xxx
Jand ARM 9 based ST9 series. Section 12.3 describes a case study of software implementation aspects
ACC system in a car.

1§§ CASE STUDY OF AN EMBEDDED SYSTEM FOR AN ADAPTIVE CRUISE
CONTROL (ACC) SYSTEM IN A CAR

joice of case study of an ACC is taken up to understand a control system design and also to understand use
DS for code implementation. The system has a number of ports for data input and output. The system
control algorithm. Sections 12.3.1 and 12.3.2 give the design steps, for requirements and class diagram

of ACL system tasks. Sections 12.3.3 and 12.3.4 describe hardware and software architecture. Sections 12.3.5
and 12.3.6 give the ACC tasks synchronization model and software implementation, respectively.

12.3.1 Requirements

Requifements of the ACC system can be understood through a requirement table given in Table 12.2.

Table 12.2 Requirements of an Adaptive Cruise Control

Noti

RJquirememf Description
Purppse 1. Controlled cruising of car using adaptive control for the car speed and inter-car distance.
Inputs Present alignment of radar (or laser) beam emitter.

Signals, Events and

fications

Outputs

Contyol Panel

Delay interval in reflected pulse with respect to transmitted pulse from emitter.
. Throttle position from a stepper motor position sensor.

. Speed from a speedometer.

. Brake status for brake activities from brake switch and pedal.

1. User commands given as signals from switches/buttons. User control inputs for ACC ON,
OFF, Coast, resume, set/accelerate buttons. .
2. Brake event. (Brake taping to disable the ACC system, as alternative to “cancel” button
at front panel).
. Safe/Unsafe distance notification.

Transmitted pulses at regular intervals.

Alarms

Flashed Messages

Range and speed messages for other cars (in case ofsmng stability mode).

. Brake control

. Output to pedal system for applying emergency brakes and driver non-intervention for
taking charge of cruising from the ACC system.

Control front-end panel has the following: (a) Switch cum display for ‘ON’, for ‘OFF’,
‘COAST’, ‘RESUME’, and SET/ACCELERATE. The driver activates or deactivates, the ACC
system by pressing ON or OFF. respectively. S/he hands over or resumes the ACC system

T RIS

QUA LN W

(Contd)



Requirement

Description

Functions of the
system

Design metrics

Test and validation
conditions

charge by pressing COAST or RESUME, respectively. S/he sets the cruise speed bg SéT/

ACCELERATE switch. A switch glows either green or red as per the status when thg ACC
activates. (b) Alarms and message flashing unit issues appropriate alarms and message ﬂashing

pictograms.

L.

[o SRS e

W N

. The differences of d with respect to safe d,, and preset distances d., (in case of mainta

. The speedometer measures the speed and error in preset speed and measured speed‘:

. When battery power becomes low, the ACC system deactivates after issuing ala _‘ 

. Power Source and Dissipation: Car Battery operation.
. Resolution: 2 m mter—car dzstancc

. Process Deadlines: Less than 1 s response on observation of unsafe distance of front .,.

. Extendibility: The system is extendable to maintain string stability of multiple cars in &
.- Engineering Cost. US$ 50000 (assumed).
. Manufacturing Cost. US$ 600 (assumed).

. Tested in dense as well light traffic conditions. a
. Tested on plains, hills and valley roads.
. All user commands must function correctly.

Cruise control system takes charge of centrolhng the throttle position from the drivisf and
enables the cruising of the vehicle at the preset constant speed. A radar system maj ftafns
inter-car distance and warns of emergency situations. ,
An alignment circuit aligns the radar emitter. When driving in a hilly area, the erhif
alignment is a must. A stepper motor aligns the attachment so that transmitter beam of }a
emits with the required beam alignment for the given driving lane and divergence to mid

the in- lane line of sight of the front-end car. task_Align does this function

immunity in ) the system and beams of multiple sources don’t interfere. task_Signal d‘
function. !

gives the computed distance d (= RangeNow) of front end car at that inst
task_ReadRange does this function. #

string stability) are cyclically estimated. task_RangeRate does tlus function.

penodlcally eshmated task Speed does this functlon

. The brake is controlled when the safe distance is not maintained and warning messde 3 i

flashed on the screen. task_Brake initiates the critical functions of brake control. Intd
service routine ISR_BrakeControl performs these functions. ‘

flashing messages (notifications).

the throttle from adaptive algorithm.

User Interfaces: Graphic at LCD or touch screen display on LCD and commands for }
cruise mode ON or OFF, resumption of driver control from ACC, setting the preset cn
speed, alarms of different tones for ACC messages to driver.




Examples and Case Studies of Program Modeling and Programming with RTOS-2 579

Following are the detailed functions of an ACC system. Cruise control (CC) is also called auto-cruise
contrgl or speed control. It automatically controls the car-speed. The driver presets a speed and the system
will tgke over the control of the throttle of the car. In systems a current control in a solenoid controls the
throttle position. A stepper motor with worn drive attachment can be used. An adaptive algorithm calculates
and sgnds the control signals to the stepper motor at the vacuum valve actuator. The orifice opening of the
vacuun valve controls the throttle valve. The valve is electro-pneumatic. Vacuum creatior. p.ovides the force
via befllows. [A d.c. or stepper motor with a worn drive attachment to the throttle can also be directly used
insteagl of vacuum actuator and bellows].

Geperally, the driver holds the vehicle steady during the drive using the accelerator pedal. Cruise control
relieves the driver from that duty and the driver hands over the charge to the CC when the road conditions are
suitable (not wet or icy, or there are no strong winds or fog) and, if the car is cruising at high speed, when there
is no Reavy traffic. The driver resumes the charge in these conditions.

Adgptive cruise control (ACC) or autonomous cruise control (ACC) or active cruise control (ACC) or
intelligent cruise control (ICC) system is commonly used in aviation electronics and defense aircrafts for
cruising since long. Use in the automotives is of recent origin. [Refer to http.//www.ee.surrey.ac.uk/Personal/
R.Yousg/java/html/cruise.html]. An ACC-system car moves in cruise mode at a preset speed. A radar or laser
or UVi(ultraviolet) emits signals at regular intervals. These signals are reflected from vehicle in the front. When
the refflected signal is received earlier than expected from a minimum safe distance, it notifies the presence of
anothdr vehicle to the system. The ACC system then decelerates and the car slows down. It accelerates again
to the |preset speed when conditions permit. A common method for ACC is only to control speed through
throttle position downshifting. New systems also apply the brakes and deploy a CMB system. CMB alerts the
driver if front object is less than 100 m distance. For a close object, CMB applies brakes softly and alerts by
tugs af the seatbelt. If driver still doesn’t react, the system retracts, locks the seatbelt and brakes hard.
phisticated ACC system can also maintain string stability to control the multiple cars streaming through
highways and in case of VIP convoys. [Refer to a paper Chi-Ying Liang and Huei Peng, “Optimal Adaptive
Cruise|Control with Guaranteed String Stability” Journal of Vehicle System Dynamics, 3, pp. 313-330, 1999].

An jadaptive control refers to an algorithm parameters in which adapt to the present status of the control
inputs fin place of a constant set of mathematical parameters in the algorithmic equations. Parameters adapt
dynantically. Exemplary parameters, which are adapted continuously, are proportionality, integration and
dijf:l:E:iation constants.

Figpre 12.10 shows how an adaptive control algorithm can adapt and function. 1t calculates the output
values|for the control signals. For an ACC system, an adjustable-system subunit generates output control
signal for throttle valve. The desired preset cruise velocity v,, desired preset distance d,,, and safe preset
distande d are the inputs to index-of-performance measurement-subunit. The measured cruise-velocity
v and distance d are also the inputs to index-of-performance computing-subunit. The comparison and decision
subuni} has inputs of set performance parameters and observed performance parameters. It sends outputs
which pre inputs to adaptive mechanism subunit. The adaptive mechanism subunit sends outputs, which are
inputs fo adjustable system. [For details of the control system algorithms, the reader may refer to the standard
texts ir) Control Engineering, namely Continuous and Discrete Control Systems by John F. Dorsey, McGraw-
Hill Infernational Edition, 2002. Digital Control and State Variable Method by Madan Gopal, Tata McGraw-
Hill, New Delhi, 1997 and Modern Control Systems — Analysis and Design by Walter J. Grantham and
Thomas L. Vincent, John Wiley & Sons, New York, 1993].

The port devices and their functions are as follows:

1. {Port_Align: It is a stepper motor port. Motor steps up clockwise or anticlockwise on a signal from
- |task_Align. The motor aligns the radar or UVHF transmitting device in the lane of front-end car.




|
|
|
i
i

2. Port_ReadRange: It is a front-end car range-measuring port. Time difference deltaT is read on a ignal
from task_Signal to port device. The port radar emits the signals through the antenna and sensor na
receives the reflected signal from the front-end car. task_ReadRange reads the Port device circuit for the
computations of delay period between the transmission and reception instances. Delay period| in s
multiplied by 1.5 x 10° m measures the range rangeNow (= distance d) in km of the front-end car.
task_ReadRange sends message for d to task_RangeRate and all other streaming cars.

Adaptive Control Essential Components

Unknown Known Perturbations
Perturbations
Inputs Y __ ) Control
= Adjustable 2 ¢ Y3  Ssignal(s)
System : "~ Index of
T Performance
A 1 Measurement
ol (P
: D B
Adaptive
Mechanism
X
Comparison
Set of given Decision c C and D adapt PID Parameters
Indices of to the Continuously Measured IP
Performance

Fig. 12.10 Model for an adaptive control algorithm adaptation and functions

3. Port_Speed: The port control function routine enables free running counter overflow interrupt. On receiving
a signal from task_Speed, the port device reads a free running counter count0 on first one-bit input from
the wheel and also sets a parameter N_rotation = 0. The counts are saved in a memory buffer all for
the port data. Each successive wheel rotation causes port to note the countN at this instance, (where
countN is the count on N rotation. Also N_rotation increments by 1 each time countN saves.

(N_rotation x wheel circumference in m)/ [T, % (countN - count0) x 1000] km/s. task_S
message to task_RangeRate and the for display controller at the speedometer, for speefiNow.
task_RangeRate then sends messages for the (rangeNow — d,,,) and (speedNow — v, ) to task_Alg ithm.

4. Port_Brake: Port device applies the brakes or emergency brakes on an interrupt signal. The service
routine ISR_BrakeControl disables the interrupts at the beginning and enables on exiting the ¢ritical
section. It applies the brakes and signals this information to all the other streaming cars also. | -

Figure 12.11 shows block diagram of units of ACC system. Figure 12.12 shows ACC system cycle of

actions and synchronizing cycle of different units. ;

12.3.2 Class Diagrams

showed in Figure 12.12 leads us to a model for the system tasks. ACC system measurements of front ¢nd car
range, distance and error estimations and adaptive control can be modeled by two class diagrams of apstract
classes, Task_ACC and Task_Control. Figure 12.13 shows two class diagrams of Task_ACC and Task_(ontrol
and also other extended classes from these classes.

Table 12.2 lists the required functions and different tasks. A cycle of actions and synchronization iunits




Der;' 8 Examples and Case Studies of Program Modeling and Programming with RTOS-2 581
Cruise Control Panel
o | [ or ]
R SoU Alarms/
Coast Resume Messages
Accelerate Flash
String Wheel Vehicle Speedometer  Clutch Pedal Brake Pedal
System System Switch System  Switch System
Y Y Y Y
Embedded System i
(Cruise Control System )
Control Signal ACC
System
Throttle Vacuum Valve Control
Position Vacuum Actuator
Sensor
Cable to
Throttle Valve Throttle Valve
Fig. 12.11 Block diagram of units of ACC system
task_Algorithm 8
:Compute for
;,Rg:l:gt?oﬁnd . Throttie Valve Accelel;atelDecelerate
Vacuum Actuator
7? task_Range Rate
or Estimation task_Speed
¢ 5 Speedometer
X Safe Eror —— ‘
opeed
9 Cycle 10
Starts Here Brake Pedal
1 U_nsafe-
6 Sensor Alignments Distance
3
task_Aling Radar ——((q))) -~
- 3.5° to + 4°Stepper - ()
L2_, | Motor for Radar-Sensor ‘ ~ 32 {(GH
alignment Port_Align Port_Ranging Front End Car
D nce Estimation |
task_Read Range
Range/Bistance
Controlling Car.-~
Fig. 12.12 ACC system cycle of actions and synchronizing cycle of different units
.| Task_ACC is an abstract class from which extended class(es) is derived to measure the range and
errors. A task objects is instances of the extended class, which Task_ACC extends. Task_ACC extends
to Task_Align, Task_Signal, Task_ReadRange and Task_Algorithm.




ISR_Beset | Task_Align ] Task_ACC

| Task_Signal | |
Task_ReadRange ISR_Ranging
T s
Task_Algorithm
| Task_Speed - Task_Control
| Task_Throttle | ISR_ThrottleControl!
| Task Brake

| ISR_BrakeControl i

Fig. 12.13 Two class diagrams of Task_ACC and Task_Control

2. Task_Control is an abstract class from which an extended class is derived to measure the ran
errors. The task objects are instances of the classes (i) Task_Brake, (ii)Task_Throttle and (iii)
Speed, which extends from task_Control. Task_Algorithm interfaces Task_Brake, Task_TH
Task_Speed and Task_ ReadRange.

3. There are two ISR objects, ISR_ThrottleControl and ISR_BrakeControl.

12.3.3 ACC Hardware Architecture

be and
Task_
rottle,

A hardware system in automotive electronics has to provide functional safety. Important hardware stahdards

and guidance at present are the following:
(a) TTP (Time Triggered Protocol)
(b) CAN (Controller Area Network) [Section 3.10.2]
(c) MOST (Media Oriented System Transport)
(d) IEE (Institute of Electrical Engineers) guidance standard exists for EMC (Electromagnetic M4
Control) and functional safety guidance.

ignetic

ontrol

Figure 12.14 shows hardware subunits in an ACC system. An automotive embedded system-based

unit uses microcontroller and separate microprocessor or DSP. ACC embeds the following hardware
1. A microcontroller runs the service routines and tasks (Figure 12.12) except task_Alg

Microcontroller has the internal RAM/ROM. RAM stores temporary variables and stack. RO
saves the application codes and RTOS codes for scheduling the tasks. CAN port interfaces
CAN bus (Section 3.10.2) at the car. The CAN interfaces ACC system with the other em
systems of the car. Interrupt controller at microcontroller control the 1nterrupts

A separate processor with RAM and ROM for the task_Algorithm executes the adaptive
algorithm (Figure 12.10).
Speedometer
Stepper motor-based alignment unit.
Stepper motor-based throttle control unit.
Transceiver for transmitting pulses through an antenna hidden under the plastic plates.
LCD dot matrix display controller, display panel with buttons.
Port devices are Port_Align, Port_Speed, Port_ReadRange, Port_Throttle and Port_Brake.
port devices are used for five actions as follows: aligning transmitted beam toward the lane, m
speed v, range d at the ACC, throttle positioning (as per the control messages fro task_Algori
braking action (as per messages fro ISR_BrakeControl).

N

© NGk W

dded

ontrol

e five
suring
) and



A Examples and Case Studies of Program Modeling and Programming with RTOS-2

To Align Unit
i ' To Speedometer
' N
i E To
! Y | Network
: o ! Bus
! Port_ReadRan i
(| OPU || PRau Torreacrange CANpot | |
sy S I _t______-_-____________________.:
Bus Hold/Start Transceiver > To Antenna
— ! > To LCD
i ro-rrocessor Interrupt To Throttle g?;‘;r:;"x
'ROM and RAM i?" t:tshkm y_ Interrupt To Brak controller or
90 0 Brake Display Panel

Fig. 12.14 ACC hardware

ACC Software Architecture

CC system cycle of actions and task scheduling model. Note the marks 1 to 10 of cycle starting and
finishirg in the figure.

ycle starts from a task, task_Align on an event (ISR call). It sends the signal to a stepper motor port
ort_Align and Port_Ranging. The stepper motor moves by one step clockwise or anticlockwise
directed.

2. |A task task_ReadRange is for measuring front-end car range. The task disables all interrupts as it is
ntering a critical section. We need real-time measurement. Port_ReadRange finds d.
3. task_Speed gets the port reading at a port Port_Speed. Task sends v, using the countN and count0
interval between the initial and N rotation.
4. task_RangeRate sends the rangeNow. It estimates the final error in maintaining the string stability from

sk_ReadRange output. It estimates of the error for maintaining the car speed from the task_Speed
tput. It outputs both error values for use by the control system adaptive algorithm. Port_Speed connects
the speedometer system of the DAS, which displays speedNow after appropriate filtering function.
ort_RangeRate transmits the speedNow also to other streaming cars also. Now Task calculates range
d rate errors, and transmits both rangeNow and speedNow.



vacuum actuator stepper motor. After a delay, the cycle again starts from the task_Align. It

statuses of Port_Brake of this and other streaming cars.
Table 12.3 List of BCC 1 task Functions and IPCs objects of the Classes shown in
Figure 12.5
BCC1 BCC1 Action IPCs IPCs Input OItput
task Function  Priority pending posted
task_Align 101 Starts on Event and Send signal to Reset Align deitaStep, step|
S Port_Align and Port_Ranging step
task_Read- 103 Disable interrupts, gets signal from Align Range - delthT
Range Port. Port activates a radar
flashing, records activation time,
gets time of sensing the reflected
radar signal and finds time difference,
deltaT. Enable interrupts.
task_Speed 105 Event Port_Speed to start a timer, - Speed - spe¢dNow
counter start message and wait for
the 10 counts for the number of
wheel rotations. Event outputs
deltaT from port.
task_Range- 107 It calculates rangeNow. Get preset Speed ACC avgTire
Rate front car range and stringRange Circum,
from memory and compare. Get time-Diff,
preset cruising speed, V; deltaT,
compare it with current speed string
speedNow. Range,
Speed,
Cruise
N_rotation
task_ 109 (i) Get errors of speed and range “ACC - range-
Algorithm and execute adaptive control Error,
algorithm. (ii) Get errors of other speed-
vehicles through Port_RangeRate. Error,
(iii) Get other vehicles Port_Brake All Port_
status. (iv) Get present throttle RangeRate
position. (v) Send output, values and
throttleAdjsut to Port_Throttle. Port_Brake
(vi) Send signal to Port_Brake in statuses,
case of emergency braking action VehiclelD,
needed. (vii) Port_Brake transmits
the action needed to other
vehicles also.

IBasic task with one task of each priority and single activation. It is called BCC 1 (Basic Conformance Class 1)




/ Examples and Case Studies of Program Modeling and Programming with RTOS-2

tagk_Algorithm generates output for ACC action. Output port for control signals generates event for a port
with 3 throttle valve. The signals at this port, Port_Throttle, are calculated as follows: An adjustable algorithm,
inputs of the speed ‘speed’ and front-object range ‘range’ as well as the unknown and unknown
tions, P_Unknown and P_Known. It adjusts the output signal to Port_Throttle. An algorithm, B, estimates
x of performance /P. An algorithm, C, compares IP with a set of given IP values. Algorithm D is as per
tive control that adapts the output of C. C sends the new parameters that are to be adapted by A.
Figure 12.15 shows a synchronization model for ACC tasks and semaphores.

2: Events l
task_Align . ISR_Align. [}  ISR_Ranging task_ReadRange.

1:Event—/ ’ £ e 4: S Q o

9: SigReset 3:Event - Slgrang

10:Event
ISR_Brake
taskﬁ:tznge ] task_Algorithm ™1 ISR_Throttle
5: Event 6: Sigspeed 7: SigACC 8: Events

Fig. 12.15 Synchronization Model for ACC tasks

12.3.6 ACC Software Implementation

ACC]| software for use in automobiles must first be certified by an organization authorized to issue
that certification. We have seen that OSEK OS standard is required [Section 10.2]. Only those VxWorks or
MUQOS functions that adhere to OSEK must be used. Software coding IEC 61508 part 3 and MISRA C version
2¢( ) specifications of safety standards and coding language must be used. [MISRA stands for Motor Industry
Reliability Association.] MISRA C specifies a collection of rules to be used while coding in C.

MIJSRA-C is a standard for C language software and defines the guidelines for automotive systems.
MISRA-C version 2 (2004) specified 141 rules for coding and gave a new structure for C. Details can be
found at http://www.misra.org.uk. Figure 12.16 shows important rules and coding standards in MISRA-C.

| MISRA-C version 2 (2004) |
[ [ 1 50 [ 101 [ 118
| 141 rules ISO 9899 No inequality or ~ No pointer No allocation
. new structure standard C equality tests arithmetic " of memory
and no for floating e - dynamically
extensions of it point variables - i ; .. toaheap
[ Conformance to IEC 61503 part 3 |

|

I 1 T
T Coding Practices
i Coding standards I stang ndard - Removal of
’ ; undefined unsafe
Source documentation standards language features

Fig. 12.16 Important rules and coding standards in MISRA-C




586 : Embedded Sﬁams

A few rules are discussed next. Its first rule is that all C codes used in automobiles must conform

may result in a loss of information. Rule number 50 does not permit inequality or equality tests for
point variables. Floating-point calculations undergo rounding off errors. The logic for introducing this
as follows: Consider ‘If ((1/3) * 3 = 1) then ...”. 1/3 = 0.33333 with 3 or 4 in the last digit and the rgsult is

of memory dynamically to a heap. Dynamic allocation has risk of using additional memory allocati
available in the system, which may cause memory leaks.

We have already learnt VxWorks (Section 9.3). Let us use VxWorks for understanding code impleme
for the ACC system. To demonstrate ACC application, let us see the application of VxWorks and how we
adapt OSEK in the following exemplary codes (Example 12.2).

1. Use BCC 1 type of tasks. as shown in VxWorks code application in Example 12.2. We defin¢ each
task of different priority and activate it only once in the codes.
Use no message queues.
Use no creation and deletion of task.
Use semaphores as event flag only with no task having run-time deletion or creation of these.
Use MISRA C rules in coding.
Use disable interrupts when a task or function enters critical section and enable interrupts when l¢aving
critical section.

AR ol

i

Example 12.1

1. #include “vxWorks:h” /* Include VxWorks functions. */

# include “semLib.h” /* Include semaphore functions library. */

# include *“taskLib.h” /* Include multitasking functions library. */

# include “sysLib.c” /* Include system library for system functions. */
#include “sigLib.h” / * Initialize kernel component for signal functions. */
2. /* Set system clock rate 10000 ticks per second. Every 100 ps per tick*/
sysClkRateSet (10000); ‘ e
3. /* Declare and Initialize Global parameters. */ 2 B
unsigned byte VehicleID; /* Declare this car ID. */ - ;
static numCars = ...; /* Numbers of cars in the strmg that should move at cruise speed. */
static unsigned byte N__rotatwn = ....; /* Initialize number of rotations needed when finding the speed, */
static int avgTireCircum = ... ; /* Inmahze average tire Circumference in mm. */

4. /* Initialize the string Range = Separation to be maintained between the two cars in the string
in mm. Initialize cruise speed. */

/* All distances are in mm, speeds in km/hr and time in nanosecond unless otherwise

specified. */

static int stringRange = ...; /* In unit of mm */

static int CruiseSpeed = ...; /* In unit of km/hr */

static float unitChange = 3600000 0; /* Km in one mm divided by hours in one nanosecond. */
float permittedSpeedError = ... ; /* In units of mm/ns error in speed permitted. It prevents osc1llat1ms: in
the control system. */
static boolean alignment = false; /* Declare alignment = false to initiate radar transmitter alignment.|*|

-

AR R




Desb*;;:ﬁxamples and Case Studies of Program Modeling and Programming with RTOS-2 587

5. /i Qther Variables, */

statif yte *step; /* Stepper motor step angle in degrees. */

stati yte * deltaStep = 0; /* Stepper motor step angle change in degrees. */

* T ¢ difference between emitted signal and reflected signal from front-end car. rangeNow is present

rangp ja mm. It is timeDiff multiplied by speedNow after a filter function application. */

statig psigned long *timeDiff; static int *rangeNow; ‘

stati¢ ? signed long *deltaT; /* Time interval for N rotation in ns. */

6. /4 D)¢clare pointers for variables range error, range now, speed error, speed now. */

int r ) Error speedError, rangeNow = 0, speedNow =0; /* Speeds are in km/hr and range in mm. */

7 M l pclare arrays of size number of cars, numCars. These many cars are running as a string. Declare
ih tus RangeErrors, SpeedErrors, Ranges, Speeds for all the cars. */

bool 4 brakeStatus [aumCars];

int R H geErrors [numCars], Ranges [numCars] SpeedErrors [numCars], Speeds [numCars};

bool . R emergency [numCars}; /* Declare variable for emergency message sent to Port_Brake of N car.

* I

int *fhye ttleAdjsut; /* Declare variable for throttle adjusting parameter */

8. /*{Cther Variables. */

§

9. /*Dieclare all Table 12.3 task function prototypes. */

voidtask_Alignment (SemlID SigReset, SemID SigAlign, byte *step, byte *deltaStep); /*task for aligning

stepget motor in front-end car view. */

void tas , _ReadRange (SIGID SigAlign, SIGID SigRange, unsigned long *timeDiff); /*task for recelvmg

the timel 1ff using the radar for calculating rangeNow. */

vmd* sk_Speed (SIGID SigRange, SIGID SigSpeed, unsigned long *deltaT); /*task for receiving the

deltal] mg the wheel counter and timer for calculating speedNow. */

voidjtask_Range_Rate (SIGID SigSpeed, SIGID SigReset, SIGID SigACC, int avgTireCircum, unsigned

byte N otation, int CruiseSpeed, int stringRange, unsigned long * time-Diff, unsigned long *deltaT, int *

rangé— tror, int *speedError, int *range-Now, int *speed-Now), /*task for calculating rangeNow, speedNow,

rangéHyror, speedError. */

v01d : _Algorithm (SIGID SigACC, SIGID SigReset, boolean brakeStatus [numCars],

int RijgeErrors [numCars), int Ranges [numCars}, int SpeedErrors [numCars], int Speeds [numCars],

bool emergcncy [numCars], unsigned byte VehicleID); /* Declare array for emergency message sent to

Port_Bfake of N™ car. */

int *thgottleAdjsut; /* Declare variable for throttle adjusting parameter */

10. /* Peclare all Table 12.3 task IDs, Priorities, Options and Stacksize. Let initial ID, till spawned

(initigted) be none. No options and Stacksize = 4096 for each of six tasks. */

int té\ k_AlignID = ERROR; int task_AlignPriority = 101; int task_AlignOptions = 0; int

task_AlignStackSize = 4096;

int R ReadRangelD = ERROR; int task_ReadRangePriority = 103; int task_ReadRangeOptions = 0; int
dRangeStackSwe = 4096;

mt tb SpeedID = ERROR; int task_SpeedPriority = 105; int task_SpeedOptions = 0; int

task_SpeedStackSize = 4096;

int taskf_RangeRateID = ERROR; int task_RangeRatePriority = 107; int task_RangeRateOptions = 0; int



‘ Embedded %ﬁms

task_RangeRateStackSize = 4096; ¥

task_AlgorithmStackSize = 4096; i

11. /* Create and Initiate (Spawn) all the six tasks of Table 12.3. */
task_AlignID = taskSpawn (“ ttask_Align”, task_AlignPriority, task_AlignOptions,

int task_AlgorithmID = ERROR; int task_AlgorithmPriority = 109; int task_AlgorithmOptions %*0‘ int
!
!

task_AlignStackSize, void (*task_Alignment) (SemID SigReset, SemID SigAlign, byte *ste%ﬁ ‘

*deltaStep), 0,0, 0, 0, 0,0, 0,0, 0, 0);

task_ReadRangeStackSize, void (*task_ReadRange) (SIGID SigAlign, SIGID SigRange, unsign
*timeDiff), 0,0, 0,0, 0,0, 0,0, 0, 0);
task_SpeedID = taskSpawn (* ttask_Speed”, task_SpeedPriority, task_SpeedOptions, task_SpeedS

task_ReadRangelD = taskSpawn (“ ttask_ReadRange”, task_ReadRangePriority, task ReadRange(ﬁ\itns,
i

void (*task_Speed) (SIGID SigRange, SIGID SigSpeed, unsigned long *deitaT), 0, 0, 0,0, 0, 0,0, @ )

task_RangeRatelD = taskSpawn (“ ttask_Range_Rate”, task_RangeRatePriority, task_RangeRateOj
task_RangeRateStackSize, void (*task_Range_Rate) (SIGID SigSpeed, SIGID SigReset, SIGID S
int avgTireCircum, unsigned byte N_rotation, int CruiseSpeed, int stringRange, unsigned long * ti ;

unsigned long *deltaT, int * range-Error, int *speedError, int *rangeNow, int *speedNow), 0, 0, 0% "

0,0,0,0);

task_AlgorithmStackSize, void (*task_Algorithm) (SIGID SigACC, Sig_ID SigReset, boolean br;

task_AlgorithmID = taskSpawn (“ttask_Algorithm”, task_AlgorithmPriority, task Algonthma%

[numCars], int RangeErrors [numCars], int Ranges [numCars], int SpeedErrors [numCars], int’ 3p

[numCars], boolean emergency [numCars], unsigned byte VehicleID), 0, 0,0, 0,0, 0, 0, 0, 0, 0); "
12. /* Declare IDs and create binary semaphore event flags. */ ;

SIGID SigAlign, SigRange, SigSpeed, SigACC, SigReset; /* Declared for Table 12.3 five tasks. *f‘

13. /* Create the binary semaphores taken in FIFO as empty to start with. */ .
SigAlign = semBCreate (SEM_Q_FIFO, SEM_EMPTY); o

SigRange = semBCreate (SEM_Q_FIFO, SEM_EMPTY); 1

SigSpeed = semBCreate (SEM_Q_FIFO, SEM_EMPTY); ‘
SigACC = semBCreate (SEM_Q_FIFO, SEM_EMPTY); !

SigReset = semBCreate (SEM_Q_FIFO, SEM_EMPTY); i

14. /* Declare function for starting an RTC timer at the Port_Ranging. */
void RTCtimer_Port_Ranging_Start () {

}
15. /* Declare a function for starting an RTC timer at the Port_Speed. */
void RTCtimer_Port_Speed_Start () {

b
16. /* Declare a function to read 64-bit time from an RTC. */

unsigned long timer_gettime (&RTC) { ' i

¢

-

~

0)!




[*#bn Examples and Case Studies of Program Modeling and Programming with RTOS-2 589

17 f* Define a macro for calculating time between instance when control bit = true and Status flag = true.

ean * CB; /* Control bit */
odean * SF; / * Status flag. */
*CB =0; /* Control bit = 0; */
*SF = 0; /* Status flag = 0; */
unsjgned short * RTC; /* Pointer to a real-time clock. */

e (*SF ! = 1) { }; /* Wait for sensor status flag to be true */

Instancel = timer_gettime (&RTC); /* Find initial time at start in the timer */

=0; *CB =0; \

(timeInstancel — timrInstance0); ‘

End of Macro to calculating time interval between two instances specified by CB and SF becoming
a */

ean countInput; / *Status flag. */
=0; /* Control run bit = 0; */
*¢o tInput 0; /* countInput mmal value. */

gned long timelnstance = 0; byte N = 0;

byte N =0; N < N_rotation; N++) {

wh’ ¢ (*CR !=1 && *countlnput != 0) { }; /* Wait for count input true. */

tlin Instance += timer. _gettime (&RTC) /* Find initial time at start m the timer */

Find of Macro to calculate time interval for N count inputs. */
* Declare Macro for sendmg a byte for stzp angle settmg to Port_Align. */

* Declare Macro to find timeDiff from Port_Ranging. */

usfsigned short RTC_Port_Ranging =...; /* Declare Address of RTC at Port_Ranging. * /
RT( timer_Port_Ranging_Start ( );

#define RANGE (unsigned short * Port_Ranging, unsigned long * timeDiff) (

unsigned short * RTC_Port_Ranging = .....; /* Declare address of RTC of Port_Ranging. */



Embedded Sys%ns

intLock ( ); /*disable interrupts. */

/ * Codes in Assembly Language for Ranging routine for Start Radar transmission by making controi‘ bit
CB=1%/ o
i

*CB=1;

*timeDiff = calculate_Timelnterval (&RTC_Port_Ranging, &CB, &SF);

intUnlock ( ); /* Enable Interrupts. */

)/* End of Macro to find time interval for reflected radar signals. */

21. /* Declare Macro to find deltaT from Port_Speed. */

unsigned short RTC_Port_Speed =...; /* Declare Address of RTC at Port_Speed. * /
RTCtimer_Port_Speed_Start ( );. .
#define SPEED (unsigned short * Port_Speed, unsigned long * deltaT) ( . !
unsigned short * RTC_Port_Ranging = .....; /* Declare address of RTC of Port_Ranging.*/
intLock ( ); /*disable interrupts. */,

/ * Codes in Assembly Language for Speed routine for Start counting the tire rotation count mputsiby

making control bit CR =1*/

*CR = 1;

*deltaT = DelT (&RTC_Port_Speed, &CR, N_rotation, &countInput); :
intUnlock ( ); /* Enable Interrupts. */ i

) /* End of Macro to find time interval for N count-inputs. */ i
22. i
# define float filter_speed (float calculatedSpeed, int *speedNow, float permittedSpeedError) (/*

for filtering the calculated speed. If the calculated value in mm/ns is within plus minus hmiid;
permittedSpeedError, do not change it; else modify it with new value. */ %
float a; i

a = (float) (speedNow/ uthhange) ’ ' i

(calculatedSpeed);} else return (a);

) /* End of macro for filtering the speed calculated to prevent vibrations and oscillation in contr
vehicle. */ ‘ . P
23. :

if (calculatedSpeed > a + permittedSpeedError | | calculatedSpeed < a — penmttedSpeedError) {13

#define RangeRate (unsigned short * Port_RangeRate, int *speedNow, int *rangeNow, int *speed&'c*

int *rangeError, unsigned byte VehicleID) (

/ *Assembly codes for sending to Port_RangeRate and transmitting the range and rate parameters»

vehicleID. Port_RangeRate sends also *speedNow for display on speedometer at Port_Speed. /
: : ' &

); /* End of Macro to transmit range and rate parameters through Port_RangeRate. */
24. to 26. /* Code for Other Declaration Steps specific to various functions */

'
#

?"

/* End of the codes for creation of tasks, semaphores, message queue, pipe tasks and variables % 4l

needed function declarations */
/*******************************ﬂ'***********************************************ﬂ

27. /* Start of Codes for task_Alignment. */

e R B e s

m,m v

m
i

-

L

/f
|




f{gw

5*

¢

.

’

}

/e

se
s

i
};,

34

~

1

(%]

B-R € —g-

o5

l#&;‘ign Examples and Case Studies of Program Modeling and Programming with RTOS-2

ofd task_Alignment (SemID SigReset, SemID SigAlign, byte *step, byte *deltaStep) {

k

en cycle starts the semaphore is given. Wait for it. */ :
Take (SigReset, WAIT_FOREVER); /* Wait for Cycle Reset Event flag. *
P* Codes for sending the step to the address of Port_Ranging. *

P = *step + *deltaStep;

- Alignment (&Port_Align, *Step);

:ﬁ:'-(l) { /* Start of while loop. */

Ly ive (SigAlign);
* End of while loop. */

% End of task_Alignment. */
3 +
****************************************************************************/

g} task_ReadRange (SIGID SigAlign, SIGID SigRange, unsigned long *timeDiff) {

P" Initial assignments of the variables and pre-infinite loop statements that execute only once */
ic unsigned short Port_Ranging = ....; /* Declare pointer to Port_Ranging. */

1 *Whait for SigAlign state change to SEM_FULL by semGive function. */

Take (SigAlign, WAIT_FOREVER);

md signal to Port_Ranging. Port activates a radar flashing, records activation time, gets time of
iing the reflected radar signal and finds time difference, timeDiff. Enable interrupts. */

NGE (& Port_Ranging, &timeDiff);

S mt}ive (SigRange);

}/* End of the codes for task_ReadRange. */

i
i
**ﬁ************************************************#**************************/

5.}/ Start of codes for task_Speed. */

voiff task_Speed (SIGID SigRange, SIGID SigSpeed, unsigned long *deltaT) {

3Ib. /* Initial assignments of the variables and pre-infinite loop statements that execute only once */
st g unsigned short Port_Speed = ...; /* Declare pointer to Port_Speed. */

0

|while (1) / /* Start task infinite loop. */
¥Take (SigRange, WAIT_FOREVER);

odes for receiving the deltaT using the wheel counter and timer for later on calculating speedNow. */
ED (& Port_Speed, &deltaT); ‘

Give (SigSpeed);

i J;/* End of while loop. */

. }/* End of codes for task_Speed */

1ﬁy***************************************************************************/




592 Embedded Sysj*ms

/* Start of codes for task_Range_Rate. */ :
void task_Range_Rate (SIGID SigSpeed, SIGID SigReset, SIGID SigACC, int avgTireCircum, unsig

byte N_rotation, int CruiseSpeed, int stringRange, unsigned long * time-Diff, unsigned long *deltaT, i t*

range-Error, int *speedError, int *range-Now, int *speed-Now) { |
static unsigned short Port_RangeRate = ...; /* Declare pointer to Port_Ranging. */ ';

i

39. while (1) { /* Start task infinite loop . */

semTake (SigRange, WAIT_FOREVER);

40. /* .Codes for calculating rangeNow, speedNow, rangeError, speedError. */
*speedNow = (int) (unitChange * filter_speed ((float) (avgTireCircum * N_rotation) / (float) (*deﬁa
int *speedNow, float permittedSpeedError)));

)

*rangeNow = (*speedNow/unitChange) * (*timeDiff)/2.0; /* Divide by 2 because reflected signal trawe[ls

twice the distance in mm/ns. */
*speedError = cruiseSpeed - *SpeedNow;

i

1
RangeRate (& Port_RangeRate, *speedNow, *rangeNow, *speedError, *rangeError, VehicleID); / "Beid

the parameters for transmission to other vehicles and Port_Speed for displays. */
if (alignment != true) {semGive (SigReset);

41. /* Code for loop of tasks of priorities 101, 103, 105 in which the values of rangeNow are calculatad" t
different step values by changing deltaStep and, finally, at that instance, alignment is declared as true £

rangeNow is minimum. Front-end vehicle is now in line of sight. */

H

} else semGive (SigACC); /* After alignment is perfect the control algorithm is sent the event ﬂag.: -/
J; / * End of while loop. */ 44
42. } /* End of codes for task_Range_Rate. */

/*******************************************************************************"

/* Start of Codes for task_Algorithm. */ H i

void task_Algorithm (SIGID SigACC, SIGID SigReset, boolean brakeStatus [numCars],
int RangeErrors [numCars], int Ranges [numCars], int SpeedErrors [numCars), int Speeds [numCags],
boolean emergency [numCars], unsigned byte VehicleID) {

43. while (1) { /* Start task infinite loop . */
semTake (SigACC, WAIT_FOREVER), ;
44, /* Assembly codes for getting errors of other vehicles through Port_RangeRate and other vehjc]
Port_Brake statuses through Port_Brake. */

45. /* Assembly codes to read throttle position from Port_Throttle. */ ’
) i

46 /* Codes for cruise speed adaptive algorithm and code for string stability maintaining adaptive algdﬁthm

to generate appropriate throttleAdjsut signal to Port_Throttle. */

i

!
|

r




De{st#'n Examples and Case Studies of Program Modeling and Programming with RTOS-2 593

47; Codes for Port_Brake action, if emergency = true. Port_Brake transmits the action needed

to r vehicles also. */
if (egiergency [numCars] = =1) {
} isemGive (SigACC); /* After alignment is perfect the control algorithm is sent the

event flag. */
48; 4 * End of while loop. */ )
}* End of codes for task_Algorithm. */

3 ************************************************************/

CASE STUDY OF AN EMBEDDED SYSTEM FOR A SMART CARD

1.10.3 introduced the smart card system hardware and software. Section 12.4.1 gives the requirements
tioning of smart card communication system. Section 12.4.2 gives the class diagram. Figure 1.13
smart card-system hardware components for a contact-less smart. Sections 12.4.3 and 12.4.4 give the
e and software architecture and synchronization model. Section 12.4.5 gives the exemplary codes.

synchgonization in the card leads us to the model Task_CardCommunication for system tasks. Card system
icates to host for identifying host and authenticating itself to the host. ISR1_Port_IO, ISR2_Port_IO
and ISR3_Port_IO are interfaces to the tasks. [A class gives the implementation methods of the interfacing
routings.] The task_Appl, task_PW, task_ReadPort, and resetTask are the objects of Task_Appl, Task_PW,
Task_ReadPort and Task_Reset, respectively. These classes are extended classes of abstract class
Task_CardCommunication.

Task_Card - Communication
Task_Reset L !

3| instealattall ISR1_Port_IO
[ Task_ReadPort } :
ISR2_Port_IO

Task_PW

[:] | 1SR3_Port 10 |

| —1

Task_Appl

Fig. 12.17 Class diagrams of Task_CardCommunication




594

Table 12.4

Embedded swstbms

Requirements of smart card communication system with a host

Requirement

N —
Description #]

Purpose

System
Functioning

Inputs

Signals,
Events and
Notifications

Outputs

Control Panel

Design metrics

1. Enabling authentication and verification of card and card holder by a host and enabling GUI at
host machine to interact with the card holder/user for the required transactions; for cxnmple
financial transactions with a bank or credit card transactions.

1. The card inserts at host machine. The radiations from the host activate a charge pump af card.
The charge pump powers the SoC circuit, which consists of card processor, memory, u‘mer,
interrupt handler and Port_IO. i

2. On power up, system-reset signals resetTask to start. The resetTask sends the messpges—
requestHeader and requestStart for waiting task task_ReadPort. ‘hl

3. task_ReadPort sends requests for host identification and reads through the Port_IO
identification message and request from host for card identification.

4. The task_PW sends through Port_IO the requested card identification after system receiyes the
host identity through Port_IO. :

5. The task_Appl then runs required API. The requestApplClose message closes the ap'g:ligtk)n.

I;ost-

6. The card can now be withdrawn and all transactions between card-holder/user now place
through GUISs using at the host control panel (screen or touch screen or LCD display pagel).

1. Received header and messages at IO port Port_IO from host through the antenna.

1. On power up by radiation-powered charge-pump supply of the card, a signal to start the $ystem
boot program at resetTask.

2. Card start requestHeader message to task_ReadPort from resetTask.
3. Host authentication request requestStart message to task_ReadPort from resetTask to rable
requests for Port_IO. :

4. UserPW verification message (notification) through Port_IO from host. 1
5. Card application close request requestApplClose message to Port_IO.

Transmitted headers and messages at Port_IO through antenna.
No control panel is at the card. The control panel and GUIs activate at the host machine (for example,
at ATM or credit card reader).

1. Power Source and Dissipation: Radiation powered contact-less operation. .
2. Code size: Code-size generated should be optimum The card system memory needs sho

and floating points and very limited use of the error handlers, exceptions, sngnals seri
debugging and profiling.

3. File system(s): Three-layered file system for the data. One file for the master file to store
headers. A header has strings for file status, access conditions and file-lock. The second le isa
dedicated file to hold a file grouping and headers of the immediate successor elementary files of
the group. The third file is the elementary file to hold the file header and file data.

4. File management: There is either a fixed length file management or a variable file {length
management with each file with a predefined offset. i

5. Microcontroller hardware: Generates distinct coded physical addresses for the program 2 didata
logical addresses. Protected once writable memory space.

6. Validity: System is embedded with expiry date, after which the card authorization throggh the
hosts disables.

7. Extendibility: The system expiry date is extendable by transactions and authorization of master
control unit (for example, bank servee). B

8. Performance: Less than 1 s for transferring control from the card to host machine. !

(Contd)




‘ n Examples and Case Studies of Program Modeling and Programming with RTOS-2 595

Requirement Description

9. Process Deadlines: None.
10. User Interaczs: At host machine, graphic at LCD or touchscreen display on LCD and commands
for card holder (card user) transactions. '
11. Engineering Cost: US$ 50000 (assumed).
12. Manufacturing Cost: US$ 1 (assumed).

T:E and 1 "_sted on different host machine versions for fail proof card-host communication.

validation
conditions

1. Task_CardCommunication is an abstract class from which extended to class (es) derive to read port
and authenticate. The tasks (objects) are the instances of the classes Task_Appl, Task_Reset,
Task_ReadPort and Task_ReadRange.

2. Task_ReadPort interfaces ISR1_Port_IO.

8. The task_PW is object of Task_PW and interfaces ISR2_Port_IO. Task_Appl interfaces ISR3_Port_IO.

12/4.3 Hardware and Software Architecture

Smart card hardware was introduced in Section 1.10.3. Figure 12.18 shows hardware inside the card.

E [ Flash Memory/ROM |
! L "y I To surface :
i | Micro-controller chip Antenna |
| 1 Transceiver and from :
5 host !
|| cPu | |RAM | | Porio machine | | |
E I H ] Charge pump ™ antenna :
i DeDy ,'
L AcAss Vee =

________________________________________________________________________________________

Fig. 12.18 Smart card hardware

Spftware using Java Card™ provides one solution. [Refer 5.7.5] JVM has thread scheduler built in. No
sepatate multitasking OS is thus needed when using Java because all Java byte codes run in JVM environment.
Javajprovides the features to support (i) security using class java.lang.SecurityManager), (ii) cryptographic
needs (package java.security*). Java provides support to connections, datagrams, IO streams and network
sockpts. Java mix is a new technology in which the native applications of the card run in C or C++ and
dowaloadable applications run in Java or Java Card™. The system has OS and JVM both.
SmartOS is an assumed hypothetical OS in this example, as RTOS in the card. Remember that a similar OS
function name is used for understanding purposes identical to MUCOS but actual SmartOS has to be different
m| MUCOS. TIts file structure is different. It has two functions as follows: The function unsigned char [ ]
OSEncrypt (unsigned char *applStr, EnType type) encrypts as per encryption method, EnType = “RSA”

ES” algorithm chosen and returns the encrypted string. The function unsigned char [ ] SmartOSDecrypt
igned char *Str, DeType type) encrypts as per deciphering method, DeType = “RSA” or “DES” algorithm
chosen and returns the deciphered string. SmartOSEncrypt and SmartOSDecrypt execute after verifying the
access conditions from the data files that store the keys, PINs and password. »

Table 12.5 gives the tasks for the card OS in this case study.




12.4.4 Synchronization Model

Embedded Sysﬁ@

Following are the actions on the card placed near the host machine antenna in a machine slot.

Step I: Receive from the host, on card insertion, the radiation of carrier frequency or clock signals in case
of contact with the card. Extract charge for the system power supply for the modem, processor, memorie§ and
Port_IO (card’s UART port) device.

Table 12.5 List of tasks, Functions and IPCs

Task Priority Action IPCs IPCs String or String or
Function pending posted System or System or
Host input Host Outpyt
resetTask 1 Initiates system None SigReset, SmartOS call  request-Heatler
timer ticks, creates MsgQStart  to the main requestStart|
tasks, sends initial
messages and
suspends itself.

task_Read 2 Wait for resetTask SigReset, . SePW Functions request-

Port Suspenson, sends Messages Smart password, |
the queue messages from OS-Encrypt, request-Appf,
and receives the MsgQStart, SmartOS- request-
messages. Starts the MsgQPW, decrypt, ApplClose
application and seeks  MsgQAppl, ApplStr, Str,
closure permission MsgQAppl- close-
for closing the Close Permitted
application.

task_PW 3 Sends request for SemPW MsgQPW, request- -
password on SemAppl Password
verification of
host when
SemPW = 1.

task_Appl 8 when SemPW = 1. SemApp! MsgQAppl. - -
runs the
application
program.

Step 2: Execute codes for a boot up task on reset resetTask. Let us code in a similar way as the ﬂes in
Example 11.1 for Firsttask. The codes begin to execute from the main and the main creates and initi
task and starts the SmartOS. There it is the resetTask, which executes first.

The steps taken by the task synchronization model are as follows: ;
1. resetTask is the task that executes like Firsttask in Example 11.1. It suspends permanently| after
the following: (a) It initiates the timer for the system ticks, which are reset at 1 ms. (b) It creates; three
tasks, task_ReadPort, task_PW and task_Appl of the system that are described below. (c) For a iting
task, task_ReadPort, it sends into a message queue MsgQStart, the request header string requestH, ager.
The latter specifies the bank-allotted PIN to the user. (d) It also sends another string request§art a
request for host PIN at the /O Port Port_IO in order to identify the host. (e) It posts a semaphor¢ flag,
SigReset, and suspends itself so that system control does not return to it till another reset. :

this




